WIND MIXING CURRENTS

Office of Naval Research
Contract N7 onr 487 T.O. 3
Geophysics Branch

Navy Department
Project NR 083-061
Technical Report No. 6

John C. Freeman, Jr.
October, 1953

Research Conducted through the
Texas A&M Research Foundation
COLLEGE STATION, TEXAS
WIND MIXING CURRENTS

(Technical Report No. 6)

Project 29 is a study of the atmospheric influence on the thermal structure of the oceans, sponsored by the Office of Naval Research (Project NR 083-061, Contract N7onr-487, Task Order 3).

October, 1953

Prepared by

JOHN C. FREEMAN, JR.
ABSTRACT

A wind system may create an ocean current by differential mixing in a two layer ocean; such a current may be imposed on other currents due to the wind through effects of stress, piling up of water and mass transport by waves. In one situation studied, such differential mixing produced an average transport of water about ten to twenty percent of the transport due to wind stress.

WIND ACTION ON THE OCEAN

Sverdrup* has summarized the processes through which wind causes currents in the ocean:

a) currents directly driven by wind stress
b) currents indirectly maintained by piling up of stratified water
c) mass transport of water by wind waves.

In addition to these effects on the ocean, wind also causes mixing between the cold thermocline waters and the warm surface layer of the ocean. The following discussion shows that through such mixing action the wind may cause an additional current (in an ocean with a stable density stratification).

It will be assumed that a strong wind mixes more cold water upward into the warm mixed layer than does a weak wind. Observations tend to verify this; for example, in Figure 1 the bathy-thermograph trace of a ship at 45°N, 45°W for 8 October is contrasted

* The Oceans, 1942, pp. 489-503.
with traces for 28 September and 18 September 1949. For the period 28 September to 8 October (period A) a wind averaging Beaufort $5\frac{1}{2}$ persisted; for the period 18 September to 28 September (period B) the wind averaged Beaufort 4. During period A the mixed layer temperature cooled almost 5° F and deepened about 110 feet, suggesting the upward mixing of a large amount of cold water into the surface layer from below the thermocline. For period B, however, the thermocline depth remained almost constant and the surface layer temperature increased, suggesting little or no mixing across the thermocline.

Consider that a strong wind (and associated mixing across the thermocline) persists in one section of the ocean, while nearby a weaker wind occurs (causing little or no mixing). The colder water in the surface layer under the stronger wind will alter the density distribution in the surface layer. In response to this new density distribution, a current will occur within the upper ocean layers.

EVALUATING THE WIND MIXING CURRENT

Assume that the ocean is a two-layer system with constant densities in the upper and lower layers. Strong winds over a portion of the ocean will then cause mixing across the thermocline (boundary) and a region of relatively cold water to be formed in the surface layer of the ocean. Neglecting the other wind effects, such a horizontal variation in the density distribution of the ocean surface layer will lead to a current.
After initial transient effects have disappeared, such a current will be in geostrophic balance so that

\[
\begin{align*}
 u &= -\frac{1}{\rho'f} \frac{\partial p}{\partial y} \\
 v &= \frac{1}{\rho'f} \frac{\partial p}{\partial x},
\end{align*}
\]

where \(u \) and \(v \) are the ocean velocity components in the \(x \)- and \(y \)-directions respectively, \(\rho' \) represents the ocean density at a given point \((x,y) \) in the surface layer and \(p \) represents pressure.

The hydrostatic equation is

\[
p(z) = p_0 + g\rho'z,
\]

where \(p_0 \) is atmospheric pressure at the ocean surface (assumed constant here), \(g \) is gravity and \(z \) is the depth (measured positive downward). We use this equation to obtain:

\[
\begin{align*}
 u &= -\frac{gz}{\rho'f} \frac{\partial \rho'}{\partial y} \\
 v &= \frac{gz}{\rho'f} \frac{\partial \rho'}{\partial x}.
\end{align*}
\]

This whole process has not affected any pressure below the surface layer. Hence there is no current below the density discontinuity.

Thus Margules formulae for the slope of density discontinuities on a rotating earth with (4) and (5) give the relationship:

\[
\begin{align*}
 u(H) &= -\frac{\rho H \partial \rho'}{\rho' f \partial y} = -\frac{\varphi}{f} \frac{\partial \rho'}{\partial y} \\
 v(H) &= \frac{\rho H \partial \rho'}{\rho' f \partial x} = \frac{\varphi}{f} \frac{\partial \rho'}{\partial x},
\end{align*}
\]

where \(\varphi = g \frac{\partial \rho'}{\partial x} \). These expressions assert that the current in the mixed water at the interface is balanced geostrophically by the
slope of the interface. We can show that this slope is a natural result of the mixing process.

For the mixing process assumed here \(\rho' \) changes such that

\[
\Delta \rho' = \frac{\Delta H}{H} (\rho - \rho').
\]

Equation (8) tells us that since space changes exist because of mixing

\[
\frac{\partial \rho'}{\partial x} = \frac{(\rho - \rho')}{H} \frac{\partial H}{\partial x}.
\]

This is essentially the same as equation (7). Thus the slope of the interface resulting from mixing balances the geostrophic current created by mixing.

Some of the features of such a wind mixing current are shown in Figure 2. The assumptions are made that a steady wind uniform over the region is blowing over the right-hand portion, while a calm exists over the left portion of the figure. These conditions have prevailed for some time so that transient effects are no longer present. The density is constant in the vertical above and below the thermocline transition zone, although it varies in the \(x \)-direction. The induced current thus would produce the isobaric pattern shown. A geostrophic current would thus be directed into the figure, and would vary from zero at the top surface to a maximum at the deepest part of the transition zone. Figure 2 differs from Figure 1C6 in The Oceans (p. 446) in that Figure 2 shows a horizontal variation in density above the transition zone, while there is no such density transition in Figure 3 adapted from The Oceans.
ORDER OF MAGNITUDE OF THE WIND MIXING CURRENT

Since the wind mixing current varies linearly with depth in the model above the total transport of water is

\[T_y = \frac{1}{2} \gamma H \left(\frac{\partial^2 \bar{H}}{\partial x^2} \right) \]
\[T_x = -\frac{1}{2} \gamma H \left(\frac{\partial^2 \bar{H}}{\partial y^2} \right) \]

(10)

(11)

Considering data from which Figures 1 and 4 were taken* over the indicated intervals of time between Stations "C" and "D", assuming one-half the variation at "D" was due to mixing, the average transport due to wind mixing during the 10-day period 28 September to 8 October was 0.4 ft²/sec. The transport due to wind stress during this period could have been about 27 ft²/sec. Hence it would appear that the wind mixing current is small compared to possible wind stress currents. However, taking into account the direction of the wind, the resultant stress transport for this period was 2-5 ft²/sec. Thus the wind mixing current was ten to twenty percent of the net transport by the wind stress for this 10-day period.

ACKNOWLEDGMENTS

This work was stimulated by contact with Mr. H. Stommel and Mr. W. Malkus at the Conference on the Thermocline held at Big

Meadows Lodge, Virginia, 25-27 May 1953, and by work on Office of Naval Research Contract N7 onr 48703, Project NR 083-061. Messers. C. Sparger and G. Jung, members of the project, made significant contributions to the style and technical detail.
The warming during the period 18 September to 28 September occurred when the winds were Beaufort Force 4. Between 28 September and 8 October the column cooled by a large amount and the winds were Beaufort force 5 1/2.
Variations in the mixing cause horizontal variations in the density which lead to a current that increases with depth. The current at the bottom of the mixed layer must balance the slope of the thermocline if there is no current in the lower layer.
\[p = \text{a unit of pressure} \]
\[v = \text{a unit of velocity} \]

Figure 2
LEGEND

FIGURE 3

An adaptation of an illustration in Sverdrup "The Oceans" showing a current constant in the horizontal and with depth in a layer of constant density.
P_0

ρ'

NO CURRENT

ρ'

NO CURRENT

$P_0 + 1p$

ρ'

$3V$

$P_0 + 2p$

$P_0 + 3p$

$P_0 + 4p$

$P_0 + 5p$

ρ

$P_0 + 6p$

NO CURRENT

$P_0 + 7p$

p = A UNIT OF PRESSURE

V = A UNIT OF VELOCITY

FIGURE 3
LEGEND

FIGURE 4

The small amount of mixing at Station "C" is illustrated here. This is to be compared with the large amount of mixing at Station "D" for the same period.
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Copies</th>
<th>Addresses</th>
</tr>
</thead>
</table>
| 3 | Chief of Naval Research
Navy Department
Washington 25, D. C.
Attn: Code 416 |
| 9 | Naval Research Laboratory
Technical Services
Washington 25, D. C. |
| 1 | Director
Naval Research Laboratory
Washington 25, D. C.
Attn: Code 4010 |
| 2 | Asst. Naval Attaché for Research
American Embassy
Navy 100
Fleet Post Office, New York |
| 2 | Chief, Bureau of Ships
Navy Department
Washington 25, D. C.
Attn: Codes 847, 845 |
| 1 | Commander
Naval Ordnance Laboratory
White Oak, Silver Spring 19, Md. |
| 1 | Research & Development Board
National Military Establishment
Washington 25, D. C.
Attn: Committee on Geophysics and Geography |
| 1 | Director
Office of Naval Research
150 Causeway Street
Boston, Massachusetts |
| 1 | Director
Office of Naval Research
The John Crerar Library Building
86 East Randolph St., 10th Floor
Chicago 1, Illinois |
| 2 | Director
U. S. Fish & Wildlife Service
Department of the Interior
Washington 25, D. C.
Attn: Dr. L. A. Walford |
| 2 | Chief of Naval Research
Navy Department
Washington 25, D. C.
Attn: Codes 466, 446 |
| 8 | U. S. Navy Hydrographic Office
Washington 25, D. C.
Attn: Division of Oceanography |
| 2 | Director
U. S. Naval Electronics Laboratory
San Diego 52, California
Attn: Codes 550, 552 |
| 1 | California Academy of Sciences
Golden Gate Park
San Francisco, California
Attn: Dr. R. C. Miller |
| 1 | Commanding General
Research & Development Division
Department of the Army
Washington 25, D. C. |
| 1 | Chief, Bureau of Yards & Docks
Navy Department
Washington 25, D. C. |
| 1 | U. S. Fish & Wildlife Service
450 E. Jordan Hall
Stanford University
Stanford, California |
| 1 | Director
Office of Naval Research
345 Broadway
New York 13, N. Y. |
| 1 | Commanding Officer
Cambridge Field Station
230 Albany Street
Cambridge 39, Massachusetts
Attn: CRHSL |
| 1 | Mr. Francis M. Lucas
ONR Resident Representative
University of Texas
Main Building, Room 2506
Austin 21, Texas |
<table>
<thead>
<tr>
<th>Copies</th>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>1030 E. Green Street</td>
</tr>
<tr>
<td></td>
<td>Pasadena 1, California</td>
</tr>
<tr>
<td>1</td>
<td>Commandant (OAO)</td>
</tr>
<tr>
<td></td>
<td>U. S. Coast Guard</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>U. S. Coast and Geodetic Survey</td>
</tr>
<tr>
<td></td>
<td>Department of Commerce</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>Department of Engineering</td>
</tr>
<tr>
<td></td>
<td>University of California</td>
</tr>
<tr>
<td></td>
<td>Berkeley, California</td>
</tr>
<tr>
<td>1</td>
<td>The Oceanographic Institute</td>
</tr>
<tr>
<td></td>
<td>Florida State University</td>
</tr>
<tr>
<td></td>
<td>Tallahassee, Florida</td>
</tr>
<tr>
<td>1</td>
<td>U. S. Fish & Wildlife Service</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 3830</td>
</tr>
<tr>
<td></td>
<td>Honolulu, T. H.</td>
</tr>
<tr>
<td>2</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Woods Hole Oceanographic Inst.</td>
</tr>
<tr>
<td></td>
<td>Woods Hole, Massachusetts</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Chesapeake Bay Institute</td>
</tr>
<tr>
<td></td>
<td>Box 426A, RPD 2</td>
</tr>
<tr>
<td></td>
<td>Annapolis, Maryland</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Narragansett Marine Laboratory</td>
</tr>
<tr>
<td></td>
<td>Kingston, Rhode Island</td>
</tr>
<tr>
<td>1</td>
<td>Department of Conservation</td>
</tr>
<tr>
<td></td>
<td>Cornell University</td>
</tr>
<tr>
<td></td>
<td>Ithaca, New York</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. J. Ayers</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Marine Laboratory</td>
</tr>
<tr>
<td></td>
<td>University of Miami</td>
</tr>
<tr>
<td></td>
<td>Coral Gables, Florida</td>
</tr>
<tr>
<td>1</td>
<td>U. S. Fish & Wildlife Service</td>
</tr>
<tr>
<td></td>
<td>Woods Hole, Massachusetts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Copies</th>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>1030 Geary Street</td>
</tr>
<tr>
<td></td>
<td>San Francisco 9, California</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Willard J. Pierson</td>
</tr>
<tr>
<td></td>
<td>New York University</td>
</tr>
<tr>
<td></td>
<td>New York, New York</td>
</tr>
<tr>
<td>1</td>
<td>Chief of Naval Operations</td>
</tr>
<tr>
<td></td>
<td>Navy Department</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C.</td>
</tr>
<tr>
<td></td>
<td>Attn: OP533D</td>
</tr>
<tr>
<td>1</td>
<td>U. S. Army Beach Erosion Board</td>
</tr>
<tr>
<td></td>
<td>5201 Little Falls Road, N. W.</td>
</tr>
<tr>
<td></td>
<td>Washington 16, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>Allen Hancock Foundation</td>
</tr>
<tr>
<td></td>
<td>University of Southern California</td>
</tr>
<tr>
<td></td>
<td>Los Angeles 7, California</td>
</tr>
<tr>
<td>1</td>
<td>U. S. Fish & Wildlife Service</td>
</tr>
<tr>
<td></td>
<td>Fort Crockett</td>
</tr>
<tr>
<td></td>
<td>Galveston, Texas</td>
</tr>
<tr>
<td>1</td>
<td>Head, Department of Oceanography</td>
</tr>
<tr>
<td></td>
<td>Brown University</td>
</tr>
<tr>
<td></td>
<td>Providence, Rhode Island</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Hawaii Marine Laboratory</td>
</tr>
<tr>
<td></td>
<td>University of Hawaii</td>
</tr>
<tr>
<td></td>
<td>Honolulu, T. H.</td>
</tr>
<tr>
<td>2</td>
<td>Head, Department of Oceanography</td>
</tr>
<tr>
<td></td>
<td>University of Washington</td>
</tr>
<tr>
<td></td>
<td>Seattle, Washington</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Lamont Geological Observatory</td>
</tr>
<tr>
<td></td>
<td>Torrey Cliff</td>
</tr>
<tr>
<td></td>
<td>Palisades, New York</td>
</tr>
<tr>
<td>1</td>
<td>Department of Zoology</td>
</tr>
<tr>
<td></td>
<td>Rutgers University</td>
</tr>
<tr>
<td></td>
<td>New Brunswick, New Jersey</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. H. H. Haskins</td>
</tr>
<tr>
<td>2</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Scripps Institution of Oceanography</td>
</tr>
<tr>
<td></td>
<td>La Jolla, California</td>
</tr>
<tr>
<td>Copies</td>
<td>Addresses</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| 1 | Bingham Oceanographic Foundation
 Yale University
 New Haven, Connecticut |
| 1 | The Chief, Armed Forces Special Weapons Project
 P. O. Box 2610
 Washington, D. C. |
| 1 | Weather Bureau
 U. S. Department of Commerce
 Washington 25, D. C.
 Attn: Scientific Services |
| 2 | The Johns Hopkins University
 Baltimore 18, Maryland
 Attn: Librarian (1)
 Chesapeake Bay Institute (1) |
| 3 | British Joint Services Mission
 Main Navy Building
 Washington 25, D. C. |
| 1 | U. S. Fish & Wildlife Service
 S. Atlantic Offshore Fishery Investigations
 c/o Georgia Game & Fish Commission
 P. O. Box 312
 Brunswick, Georgia |
| 1 | Geophysical Laboratory of
 Department of Geology
 Columbia University
 New York, New York |
| 1 | Head, Dept. of Meteor. and Ocn.
 New York University
 New York, New York |
| 1 | Southern Regional Education Board
 Marine Sciences
 830 West Peachtree Street, N. W.
 Atlanta, Georgia |
| 1 | Director
 Marine Laboratory of the Texas Game and Fish Commission
 Rockport, Texas |
| 1 | U. S. Navy Underwater Sound Lab
 Attention: Dr. Marsh
 New London, Connecticut |
| 1 | Project ARCA
 U. S. Naval Air Station
 Bldg. R-48
 Norfolk, Virginia |
| 1 | Randall Laboratory of Physics
 University of Michigan
 Ann Arbor, Michigan
 Attn: Dr. J. R. Fredericks |
| 1 | Department of Oceanography
 University of Miami
 Miami, Florida
 Attn: F. G. Walton Smith |
| 1 | Alabama Marine Laboratory
 Bayou La Batre, Alabama |
| 1 | Dr. Gerhard Neumann
 Dept. of Meteo. and Ocn.
 New York University
 College of Engineering
 University Heights
 New York 51, N. Y. |
| 1 | Virginia Fisheries Laboratory
 College of William and Mary
 Gloucester Point, Virginia |
| 1 | Director
 Duke University Marine Laboratory
 Beaufort, North Carolina |
| 1 | Librarian, Wayne A. Kalenich
 Southwest Research Institute
 8500 Culebra Road
 San Antonio 6, Texas |
| 1 | Director
 University of Florida Marine Biological Station
 Gainesville, Florida |
<table>
<thead>
<tr>
<th>Copies</th>
<th>Addresses</th>
<th>Copies</th>
<th>Addresses</th>
</tr>
</thead>
</table>
| 1 | Institute of Marine Science
The University of Texas
Port Aransas, Texas | 1 | Director
Bear's Bluff Laboratories
Wadmalaw Island, South Carolina |
| 1 | Director
Louisiana State University
Marine Laboratory
Baton Rouge, Louisiana | 1 | Institute of Engineering Research
244 Hesse Hall
Berkeley 4, California
Attn: Prof. J. W. Johnson |
| 1 | Director
Institute of Fisheries Research
University of North Carolina
Morehead City, North Carolina | 1 | Director
Gulf Coast Research Laboratory
Ocean Springs, Mississippi |