
COMPUTE!'s 

COLLECTION 
A giant assortment of over 70 

never-before-published articles and 
programs for the VIC-20. Action games, 
'~ thinking games, utilities, graphics, 
. sound, and tutorials . 

. ,', . " .::.:. '.: .: . . .. :', ,', " . " .: : : : .. : . . 

A COMPUTEI Books Publication $12.95 





COMPUTE!'s 
w~rnc~rn 

COLLECTION 

22~ei~!~tE,ublications/lnc,. 
Greensboro, North Carolina 

.. 



Copyright 1985, COMPUTE! Publications, Inc. All rights reserved. 

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the 
United States Copyright Act without the permission of the copyright owner is unlawful. 

Printed in the United States of America 

10 9 8 7 6 5 4 3 2 1 

ISBN 0-87455-007-6 

The authors and publisher have made every effort in the preparation of this book to insure the accuracy of the programs 
and information. However, the information and programs in this book are sold without warranty, either express or im
plied. Neither the authors nor COMPUTE! Publications, Inc. will be liable for any damages caused or alleged to be 
caused directly, indirectly. incidentally, or consequentially by the programs or information in this book. 

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 275-9809, is one of the 
ABC Publishing Companies and is not associated with any manufacturer of personal computers. VIC-20 is 
a trademark of Commodore Electronics Limited. 



I Contents 
Foreword ................................................ vii 

I Chapter 1. Tutorials 
Page Flip / David P. Albright .................................. 3 
Programmable Characters / Peter Busby ............. . . . . . . . . . .. 5 
Mixing Text and Graphics Characters / c. D. Lane ................ 9 
Relative Files / David Lowrey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 
Taping Programs / R. Gordon McOrmond ...................... 13 
Control over Input and Output Format / Keith Schleiffer . . . . . . . . . .. 18 
VIC Tricks / John Stilwell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 

I Chapter 2. Utilities 
Screen Scroll/Tim Adcock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29 
Tape Search / William F Brydges ............................. 31 
Move X / Bruce Farrington .................................. 34 
Speed Sticks / Charles Gerheim .............................. 36 
Arcade-Style Subroutines / Gary Greenwald .................... 38 
Screen Saves / Steve Henrickson ............................. 41 
Tape to Disk / John Hollenberg ........ . . . . . . . . . . . . . . . . . . . . . .. 44 
Super Dump / Bruce Jordan ................................. 46 
Hold a Mirror / c. D. Lone ................................... 48 
Compressed Keyword Lister / c. D. Lane ....................... 54 
Multiprocessing / c. D. Lane ................................. 57 
Screen Print II and Big Screen Print / c. D. Lone . . . . . . . . . . . . . . . . .. 62 
Tape Catalog / Pierre Pondrom .............................. 64 
Microassembler / Gregory Sommerville ........................ 70 
Special Characters in the Expanded VIC / Royon Webb .......... 78 
Faster BASIC / Todd Wilson ............................. 81 

I Chapter 3. Sound and Graphics 
Paddle Graphics / James Calloway ........................... 87 
VIC Graph / Ritchie Folk .................................... 91 
Sprite-Imation / Daniel Gray ................................. 95 
VIC Draw McGraw / Thomas Gronos ......................... 1 05 
Music Mate / Griffin I. Johnson .............................. 115 
Piano Player / Gene Klco .................................. 120 



Bitmapping Pixel/Paul McManamon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128 
Graph / Soorl Sivakumaran 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 30 
Rainbow Border / Doug Smoak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 35 
Music Maker / Brian Zupke 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 138 

I Chapter 4. Applications 
Write-On / F. Wendell Johnson 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 153 
VIC Marquee / Louis Mendelsohn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 158 
Message Board / Doug Smoak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 162 

I Chapter 5. Sports Games 
Strike Three / Tim Adcock 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167 
Speed Demon / Kerry Griffin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 73 
Lap Racer / Jeff Ranney 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 78 

I Chapter 6. Logic and Luck 
Slot Machine / Richard F. Bohr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 85 
Code Game / Linton So Chastain 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 189 
Logicolor / Stephen Hust 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 191 
Maneuver / Bryan So Jones 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 195 
Battleship / 8111 McDonnell 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 199 
Flipper / Olano N. Rowland 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 203 
Poker Challenge / Harvey J Stapleton 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 205 

I Chapter 7. Mazes 
Heist / John Clopton and Doug Thorsvlk 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 1 
Diamond Maze / V Cortes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 215 
Meltdown / Edward Tekelan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 217 
Rats! An Artificiol Intelligence Simulation / Ulrich Merten 0 0 0 0 0 0 0 0 0 0 220 

I Chapter 8. Shoot-em-ups 
Space Corridor / Paul Austin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 235 
Base Defense / Jerry Fennell 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • •• 239 
Bomber Squadron / Chris Hili . 0 •••• 0 • 0 • 0 •• 0 ••••••• 0 ••• 0 •••• 0 0 241 
Ex-Blast / Marcus Warren Hobbs 0 0 •• 0 •• 0 • 0 ••• 0 •• 0 0 ••• 0 ••• 0 • o. 246 
Meteors / Jim Koermer and 80 Short ... 0 •••• 0 •• 0 •••••••• 0 • 0 •• 249 
Hyper Ballshot / Robert Lewis .. 0 0 •• 0 •• 0 0 0 0 • 0 0 •• 0 ••••••• 0 • • • •• 251 



Laser Command / Robert L. Lykins ........................... 254 
Space Blockade / Joe W Rocke ............................ 258 
Torpedo-8 / Richard Ruef .................................. 261 
Sevicog / Jim Schmitz ..................................... 264 
Pilot / Mike Scharland ..................................... 266 
Laser War / Rob Westphal and AI Switzer . . . . . . . . . . . . . . . . . . . . .. 270 
Challenger One / Andy Wolber ............................. 273 

I Chapter 9. Adventures 
Space Mission / Paul F. McMillan ....... 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 279 
Dungeon Escape / Richard Woods 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 286 

I Chapter 10. More Games 
Place Your Bet / Bob Appleton 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 293 
Boogieball / Bobby Evangelista . 0 0 0 •• 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 296 
Light Cycles / Robert Flatman 0 • 0 0 0 •• 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 300 
Rescue Mission / E. L. Hayno 0 0 • 0 0 0 0 • 0 0 0 • • 0 0 •• 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 303 
Scavenger Hunt / Robert L. Lykins 0 0 •• 0 0 •• 0 0 0 • 0 0 •• 0 0 0 • 0 0 0 0 0 0 0 0 306 
Hide-N-Seek / Steven R. McCloskey .. 0 0 •• 0 0 •• 0 0 ••• 0 0 •• 0 0 •• 0 o. 312 
Chopper Lift / Steven Ro McCloskey .. 0 0 •• 0 0 ••• 0 ••• 0 0 •• 0 0 0 • 0 o. 315 
Spring Man / John P. Murphy 0 0 •• 0 0 ••• 0 0 •• 0 0 •• 0 0 ••• 0 •• 0 0 •• 0 0 0 318 
Trench Wars / Larry Volz 0 •••••••••••• 0 0 ••• 0 •• 0 0 0 • 0 0 •• 0 0 0 •• 0 0 321 

I Appendices 
A. Beginner's Guide to Typing In Programs .... 0 •••••• 0 0 ••• 0 ••• , 327 
Bo How to Type In Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 329 
C. The Automatic Proofreader / Charles Brannon ........... 0 • •• 332 

Index .. 0 •••••••• 0 •••••••••••••••••••••••• 0 ••••••• 0 ••• 0 •• 337 
Coupon for ordering disk ................. 0 ••• 0 • • • • • • • • • • • •• 339 



---------------------------------------------------------------...... ~ 



I Foreword 
The VIC-20 made its first appearance at a 1981 computer show, and though 
it was just a prototype then, it was a forecast of things to come. Commodore 
began delivering VICs in 1981, the same year COMPUTEt magazine started 
supporting the computer. Since then, COMPUTE! Publications has published 
more than half a dozen books devoted exclusively to the VIC, and continues 
to cover the machine in both COMPUTEt magazine and COMPUTEt's Gazette. 

Now, the editors at COMPUTE! Publications have put together their 
largest collection of never-before-published programs and articles exclusively 
for the VIC. COMPUTEt's VIC-20 Collection is packed with more than 70 pro
grams and articles, each ready to type in and run on your VIC. 

Containing nearly three dozen games, most of which run on the un
expanded VIC, COMPUTEt's VIC-20 Collection will provide hours of fun and 
entertainment for every member of the family. There are sports games to test 
your athletic talents, maze and logic games to puzzle over, and of course 
shoot-ern-ups that are just plain fun. 

Programmers will find COMPUTEt's VIC-20 Collection full of helpful tips 
and utilities. From screen dump programs to relative files to programmable 
characters, even the most experienced programmer will find something use
ful and new. 

There's something here to please every VIC owner. And even if you use 
only a fraction of the more than 70 programs, you'll be more than satisfied 
with this book. All the programs are ready to type in and run-and to make 
program entry virtually error-proof, we've included "The Automatic Proof
reader." If you want to save typing time, you can purchase a disk containing 
all the programs in this book by using the coupon in the back or by calling 
COMPUTE! Publications toll-free at 1-800-334-0868. 

You're sure to find some of the games, utilities, and applications in 
COMPUTEt's VIC-20 Collection valuable additions to your software library. 

vii 

J 





Chapter 
One 

Tutorials 





David P. I 
Albright Page Flip 

Like many other VIC owners, I bought the 8K expansion cartridge soon after 
purchasing my computer. One of the projects I wanted to do involved alter
nate screening. The owner's manual explores only one screen. In my first at
tempts I was able to get four screens. Then I discovered four more, giving a 
total of eight. 

There are two memory locations used for screen locations, 36866 and 
36869. The value within 36869 aligns the screen on a 1K boundary begin
ning at 4096. The value of 36866 shifts the screen 512 bytes upward in 
memory from the 1K boundary of 36869. 

When changing screen locations you must let the operating system 
know where the screen is. This is the purpose of location 648. The value 
within 648 is the page of memory that the screen resides in. A page is a span 
of 256 bytes. 

I The Other VIC Screens 
All addresses must be converted to binary. No matter what legal screen is 
used, its address when converted to binary will be a 13-digit binary number. 
Also, the highest value that can be POKEd is 255. In binary, therefore, the 
POKEd value can be only an 8-bit number. 

Now, here comes the hard part. Refer to page 215, section H, of the Pro
grammer's Reference Guide. 
Bits 4-6 of 36869 are bits 10-12 of the screen's address. 
Bit 7 of 36866 is bit 9 of the screen's address. 
Bit 7 of 36869 must be a 1. 
Bit 12 of the screen's address must also be a 1 (bit 6 of 36869). 

This gives you three bits to play with-bits 5 and 4 of 36869, and bit 7 
of 36866. There are eight possible combinations in which to arrange these 
three bits-eight screens. 

Multiple screens have many potential uses. They can be used for anima
tion, varied screen layouts in games, and rapid updating of large, multilayout 
business reports. 

Whenever you use any screen other than the "normal" one, you must 
move the top of your memory area so that it is above the top of your screen. 
This is done with location 44. The first location of your storage area must 
contain a zero. Any changes to the start of BASIC work areas must be done 
before the program is typed in or read from tape. Massive headaches are the 
result of not following this rule. You will also use this rule to create your 
own character sets on the expanded VIC. 

3 



I Tuto~als 
"Page Flip" requires at least 8K expansion memory. Before entering or 

loading Page Flip, enter the following line in direct mode: 
POKE 44,34:POKE 8704,O:NEW 

Page Flip 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

Ie POKE36869,192:POKE648,16:POKE36866,22 :rem 12 
12 PRINT"{CLR}{3 RIGHT}{3 DOWN}SCREEN 1":PRINT:PRINT:PRINT"4e 

96 TO 46e7" :rem 34 
15 GET A$ :IF A$=""THENI5 : rem 239 
2e POKE36869,192:POKE648,18:POKE36866,15e :rem 65 
22 PRINT"{CLR}{3 RIGHT}{3 DOWN}SCREEN 2":PRINT:PRINT:PRINT"46 

e8 TO 5119" :rem 34 
25 GET A$:IF A$=""THEN25 :rem 241 
3e POKE36869,2e8:POKE648,2e:POKE36866,22 :rem 7 
32 PRINT"{CLR}{3 RIGHT}{3 DOWN}SCREEN 3":PRINT:PRINT:PRINT"51 

2e TO 5631"· :rem 25 
35 GET A$ :IF A$=""THEN35 : rem 243 
4e POKE36869,2e8:POKE648,22:POKE36866,15e :rem 6e 
42 PRINT"{CLR}{3 RIGHT}{3 DOWN}SCREEN 4":PRINT:PRINT:PRINT"56 

32 TO 6143" :rem 34 
45 GET A$:IF A$=""THEN45 :rem 245 
5e POKE36869,224:POKE648,24:POKE36866,22 :rem 11 
52 PRINT"{CLR}{3 RIGHT}{3 DOWN}SCREEN 5" :PRINT:PRINT:PRI-NT"61 

44 TO 6555" : rem 42 
55 GET A$:IF A$=""THEN55 :rem 247 
6e POKE36869,224:POKE648,26:POKE36866,15e :rem 64 
62 PRINT"{CLR}{3 RIGHT}{3 DOWN}SCREEN 6":PRINT:PRINT:PRINT"65 

56 TO 7167" : rem 51 
65 GET A$:IF A$=""THEN65 :rem 249 
7e POKE36869,24e:POKE648,28:POKE36866,22 :rem 15 
72 PRINT"{CLR}{3 RIGHT}{3 DOWN}SCREEN 7":PRINT:PRINT:PRINT"71 

68 TO 7679" :rem 61 
75 GET A$:IF A$=""THEN75 :rem 251 
8e POKE36869,24e:POKE648,3e:POKE36866,15e :rem 59 
82 PRINT" {CLR}{ 3 RIGHT}{ 3 DOWN}SCREEN 8" :PRINT :PRINT:PRINT"76 

8e TO 8191" : rem 52 
85 GET A$:IF A$=""THEN85 :rem 253 

4 



Peter 
Busby 

Programmable 
Characters 

Are you looking for more than 64 redefinable characters for your VIC-20? Or 
perhaps you have 8K + memory expansion and, much to your distress, have 
discovered that the capability for high-resolution graphics seems to have dis
appeared? Here is a routine that will not only give you 256 programmable 
characters (and more), but will also load automatically into a VIC of any 
memory configuration. 

The VIC changes its memory allocations considerably according to how 
much memory has been added. It is possible to predict, find, and change 
these values as necessary to accommodate the needs of a particular user pro
gram. In essence, there are two variants of VICs: "Low VIC" is the standard 
5K version with no more than a 3K module of RAM added. "High VIC" has 
memory expansion of 8K or more plugged in. Table 1 shows the details of the 
pertinent memory pointers involved in reserving space for new character sets. 

Table 1. Initial Values In BASIC POinters 
Designation Register Low VIC High VIC 

Start of BASIC RAM 441 Start of variables 46 16 or 4 18 Start of arrays 48 
End of arrays 50 

Start of strings 
52 ! 30 64 or 96, etc. 

End of BASIC RAM 56 

BASIC screen pointer 648 30 16 

One consideration must be noted in table 1. If the 16-bit address for the 
start of BASIC is obtained (by PRINT PEEK (44)*256 + PEEK (43)), it would 
seem that one byte has vanished. The operating system has set the first byte 
to zero and incremented the pointer. If the start of BASIC is changed, care 
must be taken to set the corresponding initial byte to zero. (Otherwise, enter
ing RUN gives a SYNTAX ERROR.) 

BASIC presents little difficulty in changing pointers to accommodate the 
needs of a program, although the procedure for moving itself around under 
program control becomes somewhat unwieldy. The routine proposed here 
will therefore include a preprogram to set up the pointers and registers. 

5 



I Tutorials 

The Video Interface Chip adds some rather severe restrictions. The 
screen-memory start location is determined by the values of four bits, three 
in register 36869 and one in register 36866. The latter also determines which 
of two color screen memories is accessed. (It's possible to alternate screens 
by changing that bit.) The screen memory is restricted to the internal 5K 
RAM of the VIC and must start at the beginning of an even-numbered page 
only. (A page is a block of 256 bytes.) 

The character-set start location is pointed to by the first four bits in reg
ister 36869. Each increment here accesses another character set four pages 
long. These locations must also be in the internal RAM or ROM of the VIC. 
See table 2. 

Table 2. Access to Character Sets 
Procedure: POKE 36869, PEEK (36869) AND 250 OR X where 
X = Start of Character Set 

o 32768 Normal uppercase 
1 33792 Reversed uppercase 
2 34816 Normal lowercase 
3 35840 Reversed lowercase 

12 4096 Programmable RAM at page 16 
13 5120 Programmable RAM at page 20 
14 6144 Programmable RAM at page 24 
15 7168 Programmable RAM at page 28 

In order to create 64 programmable characters in the Low VIC, it is nec
essary to drop the end of BASIC and the start of strings (which work back
ward through memory from the top) down two pages and change the 
character set pointer to 15: 
POKE 56,28:POKE 52,28:POKE 36869,255 

This can be done within the user program before any strings are defined; 
however, that program will not run on a High VIC. 

The screen memory may be in any two-page block shown from page 16 
to page 30. Redefinable character sets may start only at memory location 
4096, 5120, 6144, or 7168. 

Program 1 will accommodate 64, 128, or 256 redefinable characters 
(with case shifting) in a VIC of any memory configuration. The first program 
is complete in itself and initializes the VIC for subsequent programs. 

Two changes can be made. The variable X in the first line should be set 
to the number of pages of memory required: 2, 4, 6 ... 14. A value of 8 tells 
the VIC to use 256 programmable characters. Also, the filename VIC SET 
DEMO in line 8 should be changed to reflect the name of the next program. 
Change the 8 in that line to a 1 if y.ou're using tape. 

6 



TutoMals I 
Line 1 X is the number of pages to be reserved in RAM. X must be an 

even number between 0 and 14, inclusive. The rest is identifica
tion and credit. 

Line 2 Registers V and V - 3 point to screen memory. The error routine 
traps out-of-range values in X. 

Line 3 The keyboard buffer counter is set to 2. For Low VICs the end of 
BASIC is dropped for the reserved memory; X is inverted to count 
forward; the Boolean operation results in 1 or 0; the program goes 
to line 5 or ends if the screen doesn't have to move. 

Line 4 For High VICs the start of BASIC is raised for the reserved 
memory. That initial byte of BASIC RAM is set to O. Flag F is set 
if X = 2. 

Line 5 The screen moves. All those Boolean operations save some bits in 
the registers and change others according to the value in X. 

Line 6 If the new screen occupies the same RAM as this program, half 
the screen is cleared for the message. 

Lines 7-9 The message is written in the new screen area and the program 
halts, causing BASIC to load and run the next program. 

This procedure for calling the next program effectively performs NEW, 
with all variables set to 0, but with the pointers left at their new values. 
Consequently, there is no restriction within the bounds of memory available 
on the length of the next program. 

The beginning of the second program should include the fIrst five lines 
of Program 2 in order to locate the start of the reserved memory block and to 
keep· the user from attempting to run this program without running the first 
program. 

I A Demonstration 
Program 2 demonstrates the general format of the second program. Type it 
in and save it with the name VIC SET DEMO. Then run Program I, which 
will automatically load and run Program 2. 

Line 100 The identification should reflect the name of the user program 

Line 120 
Lines 130 

to 150 

and credit all authors. 
Variables are defined and screen locations found. 

The start of reserved memory is found. If the pointers have not 
been initialized~ the error message is printed and the program 
halts. 

Demonstration lines 
Line lSI. The character set is displayed by POKEing 256 characters to the 

screen. 

7 



I Tutonols 

-
Line 160 
Line 165 

The Video Interface Chip is pointed to the new character set. 
The new character set is defined by copying the 
uppercase/graphics set at 32768. 

Program 1. VIC Set 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 X=8:A$="{CLR}VIC SET{DOWN}" :rem 144 
2 PRINTA$ :V=36869: I FXANDNOT14THENP RINT" {DOWN} IMPROPER X": END 

:rem 51 
3 POKE198,2:IFPEEK(56)=30THENPOKE56,30-X:X=14-X:ON(XAND2)/2GO 

T05 :END .: rem 167 
4 POKE44,18+X:POKEPEEK(44)*256,0:F=(X=2) :rem 34 
5 POKEV,PEEK(V)AND2070R4*(XAND12):POKEV-3,PEEK(V-3)AND1270R64 

*(XAND2):POKE648,16+X :rem 228 
6 IFFTHENA$=MID$(A$,2):FORF=0T0263:POKEPEEK(648)*256+F,32:NEX 

T:PRINT" {HOME}" 7 : rem 28 
7 POKE 36879,15:PRINT"{CLR}{YEL}":POKE 631,13:POKE 632,13 

8 PRINTA$ :PRINT" {BLK} {DOWN} LOAD" 7 CHR$( 34) ; "VIC SET 
(34) 7",8": PRINT" {5 DOWN}RUN": PRINT" {HOME}" 

:rem 108 
DEMO" 7 CHR$ 

:rem 166 
9 END :rem 16 

Program 2. VIC Set Demo 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

Some lines of this program require keywords to be abbreviated so that they will not exceed the four-screen-line 
limit. See Appendix B. 

100 PRINT" {CLR}{BLK} {8 SPACES}VIC SET{7 SPACES}{RVS} 
{4 SPACES}DEMONSTRATION{5 SPACES}" : rem 76 

120 PAGE=256:VIC=36866:COLOUR=37888+4*(PEEK(VI)AND128):SCREEN 
=PEEK(648):POKE VI+13,222 :rem 82 

130 CHRSET=PEEK( 56) :HIGH=SC: IF CH=HI THEN CH=CH+2 :HI=32 
:rem 22 

140 IF CH>32THEN CH=16 :rem 176 
150 IF CH=HI THEN PRINT" {3 DOWN}{RVS}LOAD{ OFF} AND {RVS}RUN 

{OFF} 'VIC SET' FIRST, PLEASE":END :rem 124 
151 FORI=0T015:FORJ=0T015:POKESC*PA+157+J*22+I,J+I*16:POKECO+ 

157+J*22+I,INT(RND(0)*8):NEXT:NEXT :rem 237 
160 POKE VI+3,PEEK(VI+3)AND 240 OR (8+CH/4) :rem 14 
165 FOR I=(HI-CH)*PA-1T00STEP-1:POKE CH*PA+I,PEEK(32768+I):NE 

XT :rem 229 

8 



C. D. 
Lane 

Mixing Text and 
Graphics Characters 

The VIC-20 has two independent character sets, graphics and text. The 
character set pointer can point to only one set at a time. So you can use only 
one character set at a time, right? Wrong! You can use redefined characters 
and copy the needed graphics and text characters into user memory. This 
method has two problems: It allows use of only a subset of both character 
sets and eats up 512 bytes of program RAM. There is however a solution. 

The VIC chip has a raster beam register. This register represents where 
the VIC is drawing on the screen at any given moment. The trick to mixing 
character sets is conceptually simple. First, POKE the character pointer to one 
set, wait until the scan (raster) reaches a certain point on the screen, POKE a 
different character set pointer, delay a short time, and then change back to 
the original character set. This procedure is repeated over and over, and dif
ferent parts of the screen will have different character sets on them. Run the 
program to verify this for yourself. 

I The Challenge 
The BASIC program is crude at best. It uses the WAIT statement to syn
chronize the program and the scan. You won't have a fine adjustment where 
the screen division takes place. However, with machine language you could 
control the division to within a line or even a character. You could even per
haps change character sets several times during the scan to create several 
zones. 

A further challenge would be to use this technique to mix redefined 
characters and ROM characters. The screen memory pointer could also be 
switched in harmony with the scan to create split-screen effects. 

The Experiment 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 REM PROGRAM TO PLACE BOTH ROM CHARACTER SETS ON THE SCREEN 

20 A=36868:B=A+1:C=24~ 
30 PRINT"{CLR}"::FORI=0T0504:PRINT" "::NEXT 
40 PRINT" {HOME } GRAPHIC {HOME} {15 DOHN }TEXT" 
50 FORI=0T0127:POKE7724+I,I:POKE8054+I,I:NEXT 
60 WAITA,128:POKEB,C 
70 FORI=0T01:NEXT 
80 POKEB,C+2:GOT060 

:rem 184 
:rem 149 
:rem 212 
:rem 157 

:rem 1 
:rem 189 

:rem 81 
:rem 126 

9 



l~~~ I Relative Files 
Disk drives have many advantages over cassette tape-two of them are 
speed and capacity. But the one feature that really separates disk and cassette 
is the disk drive's ability to perform random access. A tape is, by nature, a 
sequential device. To get to the ninth record, you must first read records 1 
through 8. The 1541 disk drive has the capability to read any of the 683 
blocks on a disk in any order. 

Random access on the 1541 can be very complicated and usually re
quires a large amount of code. It is accomplished by telling the disk which 
track and sector you want to access. This specifies a particular 255-byte block 
on the disk. If the records are not that large, you end up wasting space on 
the disk or you must keep track of multiple records per block. You also must 
have a method of remembering where each block is located. 

There is a better way to do all of this. You can use relative files. The for
mat of the file is very simple. It consists of fixed-length records, from 1 to 
254 bytes. Each record is individually accessible by specifying its record 
number. These record numbers are assigned sequentially from 1 to the end 
of the file. With relative files you don't have to worry about tracks and sec
tors and buffer positions. Records can span block boundaries so that little 
space is wasted. 

The four major procedures used with relative files are discussed below. 

I Creating the File 
The file is created via the OPEN command. The format is 
OPEN If,8,ch,"name,L,'' + CHR$(rl + 1) 

where 
If = logical file number 
ch = disk channel (2-14) 
name = filename 
rl = record length in bytes (1-254) 
Example: 
OPEN 1,8,2,"RELA TIVE,L," + CHR$(80) 

This will create a relative file named RELATIVE. The directory listing 
will create a relative file named RELATIVE and show a file type of REL. The 
records would be 79 bytes long. The last character in the record must be a 
carriage return, CHR$(13). Any attempt to write more than 80 characters 
would produce an error. 

10 



Tutorials I 
I Selecting a Record 
The record number you want to access is sent to the disk via the command 
channel. The format is 
PRINT# l[,"P" + CHR$(dc + 96) + CHR$(rl) + CHR$(rh) + CHR$(rp) 

where 
If = logical file number that has been opened to the disk command chan-

nel (15) 
de = logical file number for the data channel that has been opened to the 

relative file 
rl, rh = record number in low byte/high byte format 
rp = byte position in the record where you want to start reading 

An easy way to calculate rl and rh is 
RH = INT(record /256):RL = record - (RH*256) 

Example: 
Assume file 8 has been opened to the data channel and file 15 has been 
opened to the command channel. 
PRINT#15,"P" + CHR$(8 + 96) + CHR$(lO) + CHR$(O)+ CHR$(l) 

This will set the disk to access record 10 on the next access to logical file 8. 
If you attempt to position the file to a nonexistent record, you'll get a 

disk error of 50, RECORD NOT PRESENT. This may be ignored if you are 
adding records to the file, but you shouldn't attempt to read a nonexistent 
record. 

I Writing Records 
Records are written to a relative file using the PRINT# command: 
PRINT #l,"RECORD"; 

This writes six characters to the current record. 
PRINT #l,"RECORD" 

This writes seven characters (RECORD) plus a carriage return to the current 
record. 

If the record size specified on the OPEN statement is exceeded on a 
PRINT# statement, a disk error of 51, OVERFLOW IN RECORD, is returned. 
The record is truncated to the correct length. Remember that carriage returns 
are counted. 

11 



I TutoMols 

I Reading the File 
The records may be read using the GET# or the INPUT# statement. GET# 
reads a byte at a time. INPUT# can be used only to read records of less than 
80 bytes. 

In the following examples, assume that this code was executed: 
10 OPEN 15,S,15: REM OPEN COMMAND CHANNEL 
20 OPEN S,S,S,"TESTFILE,L,"+CHR$(100):REM OPEN RELATIVE FILE 
25 PRINT #15, "P"+CHR$(S+96)+CHR$(Low Byte)+CHR$(High Byte) + CHR$(l) 

(write records) 

(position to record) 

100 A$='III: REM SET INPUT STRING TO NULL 
110 GET#S,C$ : REM GET A BYTE FROM FILE S 
120 FOR A=l to 100 
130 A$ = A$ + C$ : REM ADD CHAR TO STRING 
140 NEXT 
150 REM END OF RECORD 

This will set the string variable A$ equal to the contents of the current 
record. If there is a disk error, the program will stop. After the record has 
been read, the disk must be positioned for the next record with 
PRINT #15/'P" + CHR$(S+ 96) + CHR$(Low Byte) + CHR$(High Byte) + CHR$(l) 

I Odds and Ends 
A CLOSE command must be executed when you are finished with the file. 
The logical file must be closed before closing the command channel. 
CLOSE S 

This closes file 8 and causes the disk drive to update the directory. 
When a new record is written, all records before the current one are 

checked to see if they have been created. If they haven't been created, a 
dummy record, containing CHR$(255) as the first byte, is written to hold its 
place. If the first record written is record 100, then records 1-99 will be filled 
in with dummy entries. This could take some time. 

If you try to create more records than the disk will hold, you'll get an 
error of 52, FILE TOO LARGE. Sometimes the VIC will hang up on this er
ror. The only way to recover is to press RUN/STOP-RESTORE. A general 
estimate of the number of records that will fit on a disk is 
NR = INT( ( # of free blocks on disk * 255) / record size ) - 5 

This is just an estimate and should be verified before use. 

12 



~cg~~~~ I Taping Programs 
Let's write a short BASIC program consisting of one line: 
10 REM 

Now let's save the program to tape: 
SAVE ''PROG1'' 

Before any of PROG 1 is written to tape, the VIC will write a program 
header which later will give it information on how to load the program back 
from tape. You can look at our program header by typing the following line: 
FOR J=O TO 9:PRINT PEEK(828+J);:NEXT 

This displays the first ten bytes from the cassette buffer, and it should look 
like this: 
1 1 16 9 16 80 82 79 71 49 

The first number (1) is the LOAD command; the next two numbers (1 
and 16) are the starting address; 9 and 16 are the ending address; and the 
last five bytes are the ASCII values of the program's name. The starting and 
ending addresses refer to the position of the program in memory when it 
was saved. It takes two bytes, one low byte and one high byte, to store one 
memory address. To convert the start of the program to decimal, add low 
byte to high byte times 256: 
PRINT 1 + 16 * 256 

This gives 4097, the usual starting point for a BASIC program in an un
expanded VIC. The end depends on the length of the program; in our ex
ample low byte and high byte convert to 4105. During a SAVE the VIC gets 
its information on the position of the program from the memory stored in 
locations 43 and 44 (the start-of-BASIC pointer) and in 45 and 46 (the start
of-variables pointer). Try this: 
PRINT PEEK(43) PEEK(44) PEEK(45) PEEK(46) 

I SaVing a Block of Memory 
The numbers should be the same as those in the program header. A little 
experimenting proves that if you POKE new locations into these bytes you 
can save memory to tape from almost anywhere in RAM. Let's try an experi
ment. Type 
FOR J=6656 TO 6900: POKE J,l: NEXT 

This line fills memory from 6656 to 6900 with l's. Now let's save this mem
ory. First, we must convert the starting and ending addresses into low 
byte/high byte format. Try this: 

13 



I Tutorials 

x = 6656:HIBYTE = INT(X/256):LOBYTE = x - HIBYTE*256 

You should find LOBYTE=O and HIBYTE=26, so we'll adjust our start of 
BASIC to these values by POKEing the low byte value into location 43 and 
the high byte into 44: 
POKE 43,0:POKE 44,26 

Next, substitute 6901 for X and find its low byte and high byte values 
and POKE them into locations 45 and 46. Why did we use 6901 instead of 
the end of memory at 6900? Remember, the VIC uses the start-of-variables 
pointer for the end of memory to be saved. The variables start one byte past 
the end of the program; therefore, the VIC adjusts for this extra byte by not 
saving the last byte of a memory block. This can be annoying for machine 
language programmers who must remember to add one byte to the end of 
their program SAVEs. 

If we have done everything correctly, the VIC thinks it has a BASIC pro
gram starting at 6656 and ending at 6900. Now save it with 
SAVE "ONE",l,l 

If you're not familiar with the purpose of the numbers following the 
program name, don't worry about it now because we'll talk more about it 
later. After the SAVE, reset your BASIC pointers with 
POKE 43,1:POKE 44,16:NEW 

and hold down the RUN/STOP key and hit the RESTORE key. 
Then change the memory from 6656 to 6900: 

FOR J = 6656 TO 6900:POKE J,2:NEXT 

Instead of l's the memory now contains 2's. Rewind the tape and type 
LOAD "ONE" 

At the end of the LOAD, a PEEK to any memory location between 6656 
and 6900 will show a 1 and confirm that this method works for saving mem
ory to tape. 

I Loading to a Specific Spot in Memory 
There is a similar procedure to load a program to any memory address: 
POKE the starting address into locations 43 and 44, then type the LOAD 
instruction as you normally do. One use for this is merging BASIC programs. 
Suppose we want to merge program PROG 1, which we have on tape, with 
PROG 2, which we'll write now: 
NEW 

20 REM 
30 REM 

14 



Tutorials I 
Normally, if we loaded PROG 1 at this time, it would erase PROG 2, 

because PROG 1 writes over PROG 2. We can stop this by raising the start 
of BASIC to the end of PROG 2. 
PRINT "LOW BYTE=" PEEK(45):PRINT "HIGH BYTE=" PEEK(46) 

This finds the start of variables at low byte = 15 and high byte = 16. 
Next, subtract 2 from the low byte (if the low byte was less than 2, you'd 
use low byte + 254 and high byte - 1) and type 
POKE 43,13:POKE 44,16:LOAD "PROG I" 

When the LOAD is finished, type 
POKE 43,1:POKE 44,16:LIST 

Presto, your merged program. Notice that line 10 is the last line in the 
program instead of the first. This method won't sort the line numbers in 
ascending order; however, imaginative use of the text editor can usually cor
rect the problem. Incidentally, don't try to relocate a machine language pro
gram this way unless the first two bytes of the program are O's. 

I The LOAD Command 
The first number in the program header is called the LOAD command. If it is 
a 1, the VIC can relocate the program to a different memory location from 
that given in its header. If it is a 3, the VIC must always load the program to 
the location specified in the header. You can determine which LOAD com
mand will be put in the header if you write out the entire SAVE structure: 
SAVE "filename", device number, secondary address 

Everything but SAVE is optional, but you must include a filename and 
device number to declare the secondary address. The filename is just your 
program's name. The device number for a cassette is always 1. The second
ary address determines which LOAD command will be written into the 
header, and it can take one of four values: 

o = writes a LOAD command of 1 to make a relocatable SAVE. 
1 = writes a LOAD command of 3 to make a nonrelocatable SAVE. 
2 = writes a LOAD command of 1 to make a relocatable SAVE with an end

of-tape marker. 
3 = writes a LOAD command of 3 to make a nonrelocatable SAVE with an 

end-of-tape marker. 
If you don't include a secondary address, the default is 0 (LOAD com

mand of l).This means that the VIC is normally able to relocate any program 
to the start of BASIC. This is a necessary feature for the VIC, because the 
start of BASIC changes position depending on its memory configuration. 

The secondary address can also be used with the LOAD command, and 

15 



I Tutorlals 

the syntax is identical to that of SAVE .. With LOAD, the secondary address 
has one of two meanings: 
o = relocate the program to the start of BASIC. 
1 = send the program to the location given in its header. 

However, if the LOAD command is 3 (the SAVE command was given 
with a secondary address of 1 or 3), it will override any instructions given by 
the LOAD secondary address. The LOAD secondary address has effect only 
when the LOAD command is 1. We'll demonstrate this by saving a BASIC 
program that starts at 6657. First, we must write the program, so type 
POKE 43,1:POKE 44,26:POKE 6656,0:NEW 

This moves the start of BASIC to 6657. Next, write the program: 
10 PRINT "THIS PROGRAM WAS" 
20 PRINT "WRITTEN STARTING" 
30 PRINT "AT MEMORY 6657" 

Now, carefully follow these steEs: 
1. SAVE "PROG SA=O",l,O 
2. SAVE "PROG SA=l",l,l 
3. NEW:POKE 43,1:POKE 44,16:NEW 
4. Rewind tape to the beginning of "PROG SA = 0" 

Note in step 1 that we could have omitted the device number and the 
secondary address, and in step 3, we reset the BASIC pointers so that we are 
back at 4097. Now, if you experiment with different secondary addresses for 
the LOAD command, you'll find that PROG SA = 1 always loads to memory 
starting at 6657, while PROG SA=O loads to this location only if you type 
LOAD "PROG SA=O",l,l 

If instead the LOAD's secondary address is 0, it will relocate to the start 
of BASIC. The secondary address of a VERIFY command works in exactly 
the same manner as it does with the LOAD command. When you try to ver
ify program PROG SA = 1, it will always compare the program on tape with 
memory starting at 6657, while program PROG SA=O can be verified with 
memory at that location or at the start of BASIC. 

I SAVE ROM? 
In our short exploration of the SAVE, LOAD, and VERIFY commands, we 
have found that they have several limitations. One that we have not yet 
mentioned is the inability of the VIC to save memory to tape from above 
location 32767. Try 
POKE 43,0:POKE 44,192:POKE 45,0:POKE 46,224 
SAVE "ROM" 

16 



Tutorials I 
If you decipher the low byte/high byte format, you'll see that we are 

telling the VIC to save memory from 49152 to 57343. This should take sev
eral minutes since we are saving a lot of memory (SK). However, after about 
20 seconds the SAVE will terminate. The header has been written to tape, 
but not any of the memory. This means that to save a machine language pro
gram from high memory, you must first transfer it down to memory below 
32767. To load it back into high memory, you must reverse this procedure or 
create a relocatable LOAD file with the correct starting address. 

17 



Keith 
Schleiffer 

Control over Input 
and Output Format 

I have always believed that computers are infallible. I realize that pro
grammers make mistakes, but all the machine does is add up numbers and 
remember where it has put things. It does these two operations much better 
than a person can. Since I was constantly making arithmetic errors in my 
checkbook, I got a computer to catch these mistakes and put me back into a 
life of precision. 

It was quite a shock when my computer told me the checkbook balance 
was $121.69999. 

The explanation is simple: The computer has limited precision on the 
numbers it can manipulate. If the computer repeats a series of steps, like the 
subtraction needed to balance the checkbook, it will enter from beyond the 
limit of precision and make a visible change in the number. This is not an er
ror; it's just an imprecise answer. Although the effect of the inaccuracy is re
flected throughout the fraction part of the number, it was introduced at the 
least significant digit, the smallest part of the fraction. To avoid this problem 
we must control the appearance of the output number, concealing any in
accuracy from the user. In BASIC, this requires the PRINT USING statement. 
But since the VIC's version of BASIC doesn't offer this option, controlling the 
format must become an arithmetic operation. We must actually change the 
value of the number printed out to control the format. 

I Whole Numbers 
One way to handle the problem takes advantage of the fact that the com
puter is accurate when it operates on whole numbers. When you enter a dol
lars-and-cents value, multiply it by 100 and carry out all the manipulations 
in cents; then divide by 100 before output to obtain dollars again. This pro
vides a handy solution to the problem in my checkbook program, but there 
are several disadvantages. Alterations like this must be premeditated
they're easiest when you're writing a new program and can incorporate them 
carefully. They're not what people expect to find, and they can cause confu
sion when the program is modified later by someone who doesn't realize (or 
doesn't remember) what was done. A far bigger problem with this approach 
is its lack of versatility. It works well enough when you're dealing with dol
lars and cents, but if you want outputs that reflect a variety of decimal 
places, this approach may become confusing to manage. 

18 



Tutorials 

I Changing Its Looks 
Still, the thought behind this process gives us a place to start. All we really 
want to do is control the appearance of the output, not the value of the num
ber the computer uses. To do this, we need only modify the output value, 
not the value in memory. The technique described here simply rounds off 
the number at the desired place. This conceals the tiny error in essentially 
the same manner as the PRINT USING statement would. Let's start with 
that annoying checkbook balance: 
10 A = 121.69999 

The easiest way to locate a place to cut off the undesirable portion is at 
the decimal point, between the whole number and fraction. The first step of 
the rounding process is to multiply by a number large enough to move 
everything you want above the decimal. The simplest way to do this is to di
vide by the smallest number you'll expect to see. To round off to cents (hun
dredths of dollars), divide by 0.01: 
20 B=AjO.01 

Right now, if we cut off, or truncate, the rest of the number, we'll still get 
12169 instead of 12170. We must still round off the number. While truncat
ing will cut off between 0.99 and 1.0, rounding cuts off between 0.49 and 
0.50. If we add 0.5 to the value, then truncate, we'll achieve this effect. 
30 B=B+0.5 

The INT function will cut off the fraction, leaving the part we want. 
40 B=INT(B) 

To move the decimal place back where it belongs, multiply by the same 
value that we divided in the first step: 
50 B=B*O.01 

And output the result: 
60 PRINT B 

This can all be handled in a single statement, relying on no extra 
variables: 
60 PRINT INT(AjO.01 +0.5)*0.01 

Using this technique, we need to change only the output statement and 
will not affect the value of the number the computer is operating on. This 
method works in any application. If we calculate compound interest, the re
sults will rarely come out in even dollars and cents, but we can use this ap
proach to print out the results in whole cents. This can also be applied to 

19 



I Tutorials 

different numbers of decimal places. If we want only the whole portion of a 
number, this statement will round if off: 
20 PRINT INT(A + 0.5) 

Or to the thousandth place: 
20 PRINT INT(A/0.001 +0.5)*0.001 

Or use a variable to make the output more versatile: 
20 PRINT INT(A/B+0.5)*B 

I Aligning Numbers 
Another problem is that we cannot control the space a displayed number 
takes up. Normally, output is lined up with the left margin when it is printed 
out, taking as many columns to the right as needed. For easy reading, a col
umn of figures should line up with the right margin so that all the decimal 
places are in the same column. In the checkbook program, if we want the 
numbers displayed in ten columns, including the dollar sign, the decimal 
point, and the negative sign, we need to figure out how many spaces to print 
before the number to be sure that the decimal points line up. To do that we 
need to figure out how big the number is. 

500 B$=STR$(INT(A/0.01+0.5)*0.01):BL=LEN(B$):IF BL<4 THEN 520 
510 IF MID$(B$,BL-3,1)="." THEN 550 
520 K=0:FOR L=1 TO BL:IF MID$(B$,L,1)="." THEN K=L:GOTO 540 
530 NEXT L:IF K=0 THEN B$=B$+".00":BL=BL+3:GOTO 550 
540 IF K=BL-1 THEN B$=B$+"0":BL=BL+1 
550 C=9-BL:IF C<=0 THEN 570 
560 FOR L=1 TO C:B$=" "+B$:NEXT L 
570 B$="$"+B$ 
580 PRINT B$ 
590 RETURN 

This method also allows us to have zeros fill out the columns after the deci
mal with trailing zeros. 

Lines 510-540 are used to force the extra trailing zeros. The advantage 
of this string approach is that we can edit the output number with more 
versatility, for instance, by eliminating the sign and printing negative bal
ances in red, bookkeeping style. Numbers that are too large won't fit into the 
column we've set up, but they won't bring the program to a halt, either. 
We'll need extra statements and an extra string variable to assemble the out
put, and the output will run a little bit slower. 

20 



Tutoriols I 
I GETing Input 
In addition to controlling the output appearance of the program, we want to 
control inputs as well. 

10 GOSUB 500:C$=B$:PRINT C$:END 
500 B$="" 
510 GET A$:IF A$="" THEN 510 
520 PRINT A$; 
530 IF A$=CHR$(13) THEN RETURN 
540 B$=B$+A$ 
550 GOTO 510 

This is a big improvement over the INPUT statement and will accept a 
string containing any characters. This is one of the fundamentals of "user
friendly" inputs. A user-friendly program is not just cute messages; the most 
important part of the concept is to help the user reduce work and avoid 
making mistakes. The simplest level is to double-check an input number to 
verify that it fits the desired range. A more effective technique is to limit the 
characters that can be input so that only the correct characters (in this case, 
digits) and only the right number of characters can be entered. For the 
checkbook program, we would type in the amount of the transaction, then 
hit the C, D, or B key to indicate a check, deposit, or bank charge. All other 
characters can be ignored. 

10 GOSUB 500:C=VAL(B$) :PRINT C:END 
20 REM BRANCH TO AN ACCOUNTING FUNCTION BASED ON THE VALUE OF 

F 
500 B$="":F=0:PRINT "$"; 
510 GET A$:IF A$="C" AND B$<>"" THEN F=l:RETURN 
520 IF A$="D" AND B$<>"" THEN F=2:RETURN 
530 IF A$="B" AND B$<>"" THEN F=3:RETURN 
540 IF (A$>="0" AND A$<="9") OR A$="." THEN PRIN~ A$; :R$=B$+A 

$ 
550 GOTO 510 

This technique is called masking, because it works just as though a mask 
had been placed over most of the keyboard. Line 540 allows the computer to 
see only the keys we permit. After return from this routine, we use the VAL 
function to find the input value, and F tells us which arithmetic routine to 
follow. There is one more key we need to be able to use, INST jDEL. The 
problem is that if we just include the delete character in the string, then the 

21 



Tutorials 

VAL function won't see the complete number even though it is displayed 
properly on the screen. Adding another line: 

535 IF A$ = CHR$(20) THEN B$ = LEFT$(B$,LEN(B$) -l):PRINT A$; 

will cut off the last character of the string rather than leaving the delete 
character in the string. By masking out the other characters, we have estab
lished control over the input value without having to check the value itself, 
thus limiting the possibility for mistakes. 

One drawback to the GET statement is that the cursor is not activated. 
This can lead to uncertainty at times. 

We have discussed some ways to control the format of output to make it 
more readable. These two concepts, improved readability and reduced 
possibility of mistakes during user input, are an important part of user
friendly programs. 

22 



John I 
Stilwell VIC Tricks 

Working on machines like the VIC-20 that have limited amounts of memory 
is challenging. For me, most of the fun is in seeing how little memory I can 
make a program fit into. This endeavor can be advantageous when working 
on programs that need all the room they can get. File handlers are a good 
example. With that example in mind, here are five techniques that have more 
than an academic value. 

I Trick 1 
This trick is for use with nested FOR-NEXT loops. The NEXT statements 
have to be consecutive. None of them other than the first one can be 
branched to. If these requirements are met, the NEXT statements can be 
combined. 
10 FORI = 1 T010:FORJ = 1 T010:FORX = 1 T010:PRINTI;J;X:NEXTX:NEXTJ:NEXTI 
memory usage = 65 bytes 

This is how the above line looks with the NEXTs combined into one 
statement: 
10 FORI = 1 T010:FORJ = 1 T010:FORX = 1 T010:PRINTI;J;X:NEXTX,J,I 
memory usage = 63 bytes 

You save one byte for every NEXT statement that you combine. 

I Trick 2 
Use as few variables as possible. They can eat up memory very easily. You 
can't tell how much your program will take merely by doing the FRE com
mand when the program is loaded into the computer. This is because the 
computer doesn't allocate memory for variables until it has to use them. 
Thus, your program will increase in size as it runs. To check the actual size 
of your program, use the FRE command after the program finishes running. 

The best way to use this technique is through organization. One way to 
cut down on the number of variables that you use is to set aside three vari
ables to be used only for such temporary information as FOR-NEXT loops. 

I Trick 3 
This is something that you shouldn't do until the program is finished. If you 
aren't familiar with this technique, it can be quite confusing to use while 
you're writing the program. 

Words-or preferably phrases-that are used more than once can be put 
into string variables. If you use this trick, you obviously can't use a CLR 
statement in the program without reinitializing the strings. 

23 



I Tutorials 

10 PRINT"WE WILL GO TO THE PARK TODAY":GOT050 
20 PRINT"I WILL GO TO THE PARK TODAY":GOT050 
memory usage = 79 bytes 

In the beginning of the program, set the variable P$ equal to the phrase 
"WILL GO TO THE PARK TODAY" and then replace this phrase with P$ 
everywhere it occurs. 
5 P$="WILL GO TO THE PARK TODAY" 

10 PRINT"WE"P$:GOT050 
20 PRINT"I"P$:GOT050 
memory usage = 74 bytes 

The more times that you can use P$, the better. You will save a consid
erable amount of memory each time you use it. In this case, you'll save 
about 24 bytes each time after the first 2 bytes. The total amount of memory 
saved is dependent on the length of the string and the number of times that 
you use it. 

I Trick 4 
This is a technique that I picked up recently. It has the interesting quality of 
being next to impossible to use. It involves breaking a PRINT statement in 
half. Normally, if you had a PRINT statement that was longer than 87 
characters, you would break it into two separate statements with the first 
ending with a semicolon. 

If there is a TAB or a SPC statement in the PRINT, break it there, thus 
eliminating the need for a semicolon. The first example shows one of the tra
ditional ways of breaking a PRINT into two separate lines. 
10 PRINT"HERE I STAND"TAB(9)" AND"; 
20 PRINT" I AM" Y "YEARS OLD" 

The next example shows how the first example can be rewritten so that 
the semicolon is unnecessary. 
10 PRINT"HERE I STAND"TAB(9) 
20 PRINT" AND I AM" Y " YEARS OLD" 

If you compare the first example with the second, you will notice that 
the AND is separated from the I AM in the first example, and thus requires 
two more quotation marks. The total memory saved is three bytes. You save 
one for the semicolon and two for the two quotation marks not used. 

I Trick 5 
With this trick, we enter into the realm of useful POKEs. Have you ever 
wanted to write a program that was too big for your VIC? Like a series of 
adventure games where a game should be played only after the previous one 

24 



Tutoriols I 
is completed? If so, the following POKEs will come in handy. POKE 198,1 
then POKE 631,131, and your VIC will both load and run the next program 
on the tape. 

These two POKEs do the same job as the SHIFTed RUN/STOP key. As 
with the RUN/STOP key, words will be printed on the screen. If you don't 
want anything printed on the screen, the easiest thing you can do is to 
change the cursor color to match the screen color. You'll still have words 
printed on the screen, but you won't be able to see them. You will also have 
to place the cursor on a line where there is nothing printed to avoid getting a 
SYNTAX ERROR. With this in mind, try it out in the program before you 
change the cursor color. 

25 





Chapter 
Two 

Utilities 





AdcJ~~ I Screen Scroll 
These two routines will scroll a screen display left or right. They are written 
for the unexpanded VIC, but will work with 3K expansion. Because of the 
speed required to accomplish scrolling, they were written in machine lan
guage (ML). 

The routines work somewhat like the scrolling that occurs when printing 
to the screen, except everything scrolls left or right. A major limitation of 
these routines is that they scroll only about one half of the screen (11 lines). 
This actually is not a big disadvantage since, in many games, you don't have 
to scroll the whole screen, and, in fact, you may want some things to stay 
put (such as a player's score). Also included are simple instructions for 
modifying the programs so that they scroll whatever "block" of the screen 
you desire. 

To use Programs 1 and 2, just type them in as shown. When they are 
run, the ML portion will be POKEd into memory (in the cassette buffer). 
Now you can POKE or PRINT anything on the screen (in program mode) as 
an initial "setup" and call the routine by SYS828; everything on the first 11 
lines of the screen should scroll over one space. 

As the programs are written now, everything is in white, so if you 
PRINT your initial setup, be sure it is done in white. You can use other col
ors, but in your setup you have to POKE these colors into the color matrix. 
Also, you'll have to use the same color in each individual row. For example, 
if you want the top row to be in red, you would POKE locations 38400-
38421 with 2, PRINT (or POKE) the first line in red, and then call the rou
tine. Of course, before you call the routine, you could also set up the other 
rows using the same method. 

Here is a very basic use of the programs: In a game, you can have an 
initial setup routine as described above. Then call the routine with SYS828. 
After everything has scrolled over one space, POKE the empty spaces (on the 
edge of the screen) with whatever you want. Repeating this process of calling 
the routine and then POKEing the empty spaces can result in a nice scrolling 
display. Append Program 3 to Program 1 or 2 for a demonstration. 

Program 1. Scroll Right 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

9 POKE3,11 :rem 41 
10 FORT=828T0828+60 :rem 81 
20 READA:POKET,A:NEXT :rem 98 
25 DATA 169,20,133,1,169,21,133,2 :rem 75 
27 DATA 166,1,164,2,208,17,162,O,169,32,157,O,30,138,24,105,2 

2,170,201 :rem 93 

29 

l 



I Utilities 

30 DATA 220,208,242,96,189,0,30,153,0,30,138,24,105,22,170 
:rem 15 

40 DATA 168,200,198,3,165,3,208,237,169,10,133,3,198,1,198,2, 
76,68,3 :rem 33 

Program 2. Scroll Left 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

9 POKE3,11 :rem 41 
10 FORT=828T0828+62 :rem 83 
20 READA:POKET,A:NEXT :rem 98 
25 DATA 169,1,133,1,169,0,133,2 :rem 231 
27 DATA 166,1,164,2,192,21,208,17,162,0,169,32,157,21,30,138, 

24,105,22,170,201 :rem 231 
30 DATA 220,208,242,96,189,0,30,153,0,30,138,24,105,22,170 

:rem 15 
40 DATA 168,136,198,3,165,3,208,237,169,11,133,3,230,1,230,2, 

76,68,3 :rem 16 

Program 3. Scroll Demo 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

50 PRINT"{BLK}":PRINT"{CLR}";: :rem 217 
60 POKE36879,93:FORT=7680+30720T07899+30720:POKET,0:NEXT 

70 PRINT" {2 SPACES}VIC-20 SCROLLING" 
130 PRINT"{3 Dmm} PRESS ANY KEY TO SEE" 
170 PRINT"{2 OOWN}{4 SPACES}SCROLL WORK{6 SPACES}" 
180 GETA$:IFA$=""THEN180 
190 FORT=IT030:SYS828:FORG=lT0100:NEXT:NEXT 

30 

:rem 41 
: rem 86 

:rem 118 
:rem 157 

: rem 85 
:rem 32 



~~~~:; I Tape Search 

"Help! I'll never find that program! It's on one of these tapes in this pile .... " 
Does this lament sound familiar? There is a way to speed up locating 

your data files and program files. Can this program help unravel the mystery 
files? 

As more and more programs are stored on tape, that collection of tape 
cassettes rapidly increases. Some cassettes are used more often than others. 
Users tend to forget what information is stored on seldom-used cassettes. 
The question was put to me, "Short of loading every program on every cas
sette, how can I find out what is on a tape cassette?" 

It is a perplexing problem to say the least. Many users know that data 
files cannot be loaded into memory and executed in the same manner as a 
program file. This aspect of tape storage presents the problem of identifying 
the type of file stored on tape as either data or program file. Finally, a pro
gram which looks promising to VIC owners may not be able to be loaded 
into an unexpanded VIC. Is it possible to know the memory required to load 
a program file before an attempt is made to load it into memory? 

I Tape Header 
Programming the VIC by Raeto Collin West (COMPUTE! Books) contains a lot 
of useful information about tape storage, including the tape header. When a 
file is written to tape, an identification header is written that precedes the file 
information. The header contains information to identify the file as a pro
gram or data file, the load address of the file, the end address of the file, and 
the name of the file, if any. The memory requirement of the program can be 
calculated from the load and end address by subtraction. 

When a tape file is accessed by either LOAD or OPEN, the header of the 
file is placed into the cassette buffer of the computer. The cassette buffer is at 
memory location 828 and occupies 192 bytes of memory, of which 191 bytes 
are usable. To use the identification information stored in the header, the 
first 5 bytes of the buffer must be PEEKed after the header is loaded from 
tape. This information is processed as follows: 

Byte Contents 
1 Type of file: 

2, 3 
4, 5 
6-180 

1 signifies program file 
4 signifies data file 

Load address of file stored in low byte/high byte order 
End address of file stored in low byte/high byte order 
Contain name of cassette file, if any (This will contain spaces, chr$(32), if no 
name present.) 

31 



I Utilities 

I The Program 
Line 210 opens logical file 1 to the cassette for a read operation. The infor
mation from the file header is placed into the cassette buffer. Lines 220-240 
PEEK the value contained in the first 5 bytes of the cassette buffer. These 
values are assigned to the single array, A. Lines 310 and 320, respectively, 
calculate the load address and end address of the file. Lines 340-390 PEEK 
the name of the file one character at a time, until 25 bytes of the name have 
been determined or until two spaces have been encountered in the name. 
The name is highlighted when it is printed. 

Most BASIC program files will have the load address of 4097. Data files 
will have their load addresses as the start address of the cassette buffer. 

I have used the above routine extensively with my students at school. It 
has been a valuable utility for searching tape files. 

Tape Search 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

180 DIM A(10):COUNT=0 :rem 150 
195 PRINT"{CLR}":PRINTCHR$(18)~"{5 DOHN}THIS ROUTINE HILL LOA 

DAND EXAMINE SUCCESSIVE" :rem 230 
200 PRINTCHR$(18)~"FILES AS ENCOUNTERED ON TAPE CASSETTE 

:rem 157 
202 PRINTCHR$(18)~"{2 DOWN}PRESS ANY KEY :rem 185 
204 GETR$:IFR$=""THEN 204 :rem 113 
205 PRINT" {CLR} (5 DOWN}INSERT TAPE CASSETTE IN DRIVE. 

:rem 200 
206 PRINT"TOUCH {RVS}RETURN{OFF} KEY TO CONTINUE." :rem 143 
208 GET C$:IF C$="" THEN 208 :rem 91 
210 OPEN1,1,0 :rem 175 
220 FOR 1=0 TO 4 : rem 8 
230 A(I)=PEEK(828+I) :rem 57 
240 NEXT I : rem 30 
250 IF A(0)=1 THEN PRINT"{CLR}{2 DOWN}FILE TYPE: PROGRAM":GO 

TO 300 :rem 197 
260 IF A(0)=4 THEN PRINT"{CLR}{2 OOHN}PILE TYPJ<:: DATA": 

300 REM *** CALCULATE LOAD ADDRESS/END ADDRESS 
310 PRINT"{OOWN}LOAD ADDRESS IS:"~A(l)+(A(2)*256) 
320 PRINT"{DOWN}END ADDRESS IS:"~A(3)+(A(4)*256) 
3313 PRINT"{OOWN}FILF. NAME IS:"~ 
340 FOR 1=833 TO 859 
350 IF PEEK(I)=32 THEN COUNT=COUNT+l 
360 IF COUNT>l THEN CLOSE1:GOT039I?J 
370 PRINT CHR$(18)~CHR$(PEEK(I»i 
380 NEXT I: 
3913 PRINT 

32 

:rem 255 
:rem 181 
:rem 119 

:rem 51 
:rem 202 
:rem 235 

:rem 98 
:rem 5 

:rem 105 
:rem 93 
:rem 41 



Utilities I 
400 REM *** CALCULATE SIZE OF MEMORY ALLOCATED TO PROGRAM 

:rem 113 
410 IF A(0)=4 THEN 450 :rem 31 
420 PRINT"{DO\'lN}MEMORY ALLOCATED TO FILE:": :rem 18 
430 PRINT ( (A( 3) + (A ( 4) * 256) ) - (A ( 1 ) + (A ( 2 ) * 2 56) ) ) + 1:" BYTES" 

450 PRINT "{ 4 DOWN}MORE?" 
460 GETJ$:IF J$="" THEN 460 
470 IF J$=CHR$(89) THEN 205 
480 END 

:rem 62 
:rem 32 

:rem 105 
:rem 94 

:rem 115 

33 



Bruce I 
Farrington Move X 

Whether I'm writing an arcade-style game or an educational program, a com
mon subroutine that I find handy is the "Move X" utility program. This pro
gram moves a flashing X anywhere on the screen and can check to see if the 
fire button has been pressed. 

This form of input to the computer has several advantages over typing 
something in by using the keyboard. First, it is quicker and a much more 
natural way to interact with the computer. Second, small children can learn 
to use it almost immediately, unlike the typewriter keyboard. 

This utility program has several important features: It is easy to change 
the character to be displayed as well as its color. The flashing X (or whatever 
character you choose) cannot leave the screen. If you move the X over an
other character already on the screen, it will restore that character and color 
back to the screen after the X moves somewhere else. The line numbers are 
high, so you can append it to the end of an existing program. Another useful 
feature is that you'll always know your screen character and color code po
sitions. This is very important whether destroying aliens or having children 
find their way out of a hidden maze. 

This utility program is designed to be user friendly. I hope it will be 
your first step to many new and exciting programs. 

I Program Description 
This program will run on an unexpanded VIC and requires a joystick. Type it 
in and save it on tape or disk. When you run this program, you will notice a 
flashing X in the middle of the screen. Using the joystick, practice moving it 
around the screen. Try to move the flashing X off the screen. 

Move X 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

51005 DIM JS(2,2):DD=37154:BI=PEEK(7932):BC=PEEK(38652):PA=37 
137:PB=37152:0B=86:C0=2 :rem 230 

51006 FORI=0T02:FORJ=0T02:READJS(J,I):NEXTJ,I :rem 86 
51007 DATA7,0,1,6,8,2,5,4,3 :rem 75 
51009 DEFFNP(S)=(7932+PX+S):DEFFNC(S)=(38652+PX+S) :rem 117 
51020 PX=0:POKE38652,CO:POKE7932,OB :rem 55 
51030 GOSUB52040 :MV=JS(X+1, Y+1) : rem 17 
51035 IFFNP(0)<=7701AND(MV=00RMV=10RMV=7)GOT051030 :rem 10 
51037 IFFNP(0)=7702ANDMV=7GOT051030 :rem 29 
51040 IFFNP(0»=8164AND(MV=30RMV=40RMV=5)GOT051030 :rem 16 
51045 IFFNP(0)=8163ANDMV=3GOT051030 :rem 26 
51050 IF(FNP(0)=7680ANDMV=6)OR(FNP(0)=8185ANDMV=2)GOT051030 

:rem 188 
51070 POKEFNP(0),BI:POKEFNC(0),BC: :rem 244 

34 



utilities 

51100 IFMV=0THENPX=PX-22 :rem 227 
51110 IFMV=4THENPX=PX+22 :rem 230 
51120 IFMV=6THENPX=PX-l :rem 184 
51130 IFMV=2THENPX=PX+l :rem 179 
51150 IFMV=7THENPX=PX-23 :rem 240 
51160 IFMV=lTHENPX=PX-21 :rem 233 
51170 IFMV=5THENPX=PX+21 :rem 236 
51180 IFMV=3THENPX=PX+23 :rem 237 
51200 BI=PEEK(FNP(0»:BC=PEEK(FNC(0» :rem 101 
51400 IFFNP(0)<76800RFNP(0»8185THENGOT051030 :rem 122 
51470 POKEFNP(0),OB:POKEFNC(0),CO :rem 209 
51565 REM THIS IS A GOOD SPOT TO CHECK IF FIRE BUTTON IS DEPR 

ESSED (IF FR=l THEN •.• ) : rem 218 
51570 GOT051030 :rem 52 
52040 POKEDD,127:S3=-«PEEK(PB)AND128)=0):POKEDD,255 :rem 224 
52050 P=PEEK(PA):Sl=-«PAND8)=0):S2=«PAND16)=0):S0=«PAND4)= 

0) : rem 23 
52060 FR=-«PAND32)=0):X=S2+S3:Y=S0+S1:RETURN :rem 183 

35 



Charles I 
Gerheim Speed Sticks 

After reading Michael Kleinert's article describing his routine to interface a 
joystick to the VIC-20 ("Joystick and Keyboard Routine," COMPUTE!'s Sec
ond Book of VIC), I incorporated the joystick routine into a simple game 
which worked quite well. The article also got me interested in machine lan
guage, and during my reading I found some references concerning the use of 
the 6522 Versatile Interface Adapters (VIAs), which showed me how to ex
pand the routine to provide for diagonal control by the joystick. 

Briefly, each 6522 VIA contains two registers, or ports (A and B), which 
are used for either input or output. Each port consists of eight bits which 
contain the input/output information. The data direction (input or output) of 
each bit is determined by the VIA's Data Direction Register (DDR). To set a 
bit of a port to input, you must set the corresponding bit of the DDR to O. 
For example, to set bit 1 ot port A to input and leave the other bits set to 
output, a BASIC program would POKE 253 (binary 11111101) into the ad
dress of the DDR for port A. If a switch is on, the corresponding bit of the 
port will be o. 

Program 1 is a listing of a routine which loads the joystick routine start
ing at memory location 7168 ($ICOO). The first two statements of the pro
gram protect the top 512 bytes of user memory, into which the machine 
language routine is loaded. 

The calling program should perform the following functions: 

1. Load the machine language routine. 
2. Call the routine with a SYS 7168 statement. 
3. Get the direction data from location 7424 ($IDOO) with a PEEK(7424). 
4. POKE the character into the new location. 

Program 2, when added to Program I, gives a demonstration of how the 
routine is used. It also gives an example of using the VIAs in a BASIC pro
gram. In this case the fire button in the joystick is tested to see if it is being 
pressed, and the color is changed through a set sequence if it is. 

Program 1. Speed Stick 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 POKE52,28:POKE56,28:RP=0:DIS=0:CO=0 :rem 208 
2 FORI=0T060:READN:POKE7168+I,N:NEXT :rem 34 
9000 DATA169,28 :REM $1C00 LDA #$lC : rem 187 
9001 DATA133,2 :REM $lC02 STA $02 :rem 95 
9002 DATA169,50 :REM $lC04 LDA #$32 :rem 173 
9003 DATA133,1 :REM $lC06 STA $01 :rem 99 
9004 DATA169,0 :REM $lC08 LOA #$00 :rem 121 
9005 DATA168 :REM $lC0A TAY :rem 156 
9006 DATA170 :REM $lC08 TAX :rem 150 

36 



Utilities I 
9007 DATA141,19,145 :REM $lC0C STA $9113 :rem 223 
9008 DATA169,127 :REM $lC0F LDA #$7F :rem 18 
9009 DATA141,34,145 :REM $lC11 STA $9122 :rem 205 
9010 DATA173,17,145 :REM $lC14 LDA $9111 : rem 181 
9011 DATA73,255 :REM $lC17 EOR #$FF :rem 238 
9012 DATA41,28 :REM $lC19 AND #$lC :rem 143 
9013 DATA24 :REM $lCIB CLC :rem 72 
9014 DATA106,106 :REM $lCIC ROR ROR :rem 82 
9015 DATA24 :REM $lCIE CLC :rem 77 
9016 DATA14,32,145 :REM $lCIF ASL $9120 :rem 163 
9017 DATA176,2 :REM $lC22 BCS #$O2 :rem 130 
9018 DATA9,8 :REM $lC24 ORA #$08 :rem 54 
9019 DATA168 :REM $lC26 TAY :rem 152 
9020 DATA169,255 :REM $lC27 LDA #$FF :rem 16 
9021 DATA141,34,145 :REM $lC29 STA $9122 :rem 208 
9022 DATA177,1 :REM $lC2C LDA ( $01) , Y :rem 58 
9023 DATA141,0,29 :REM $lC2E STA $lD00 :rem 127 
9024 DATA96 :REM $lC31 RTS : rem 107 
9025 DATA23,1,45,23,22,0,44,23,24,2,46 :REM $lC32 DATA 

:rem 158 

Program 2. Speed Stick Demo 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

3 FP=7680:CO=0:CP=38400:FI=160 :rem 186 
1O SYS7168:DIS=PEEK(7424)-23 :rem 102 
20 IFRP+DIS>506THENRP=RP+DIS-506:GOT040 : rem 209 
30 RP=RP+DIS:IFRP<0THENRP=RP+506 :rem 6O 
40 POKE7680+RP,102:POKE38400+RP,CO :rem 231 
50 IF(PEEK(37137)AND32)=0THENCO=CO+l:IFCO>15THENCO=0 :rem 126 
60 GOT010 :rem ° 

37 



Gary 
Greenwald 

Arcade-Style 
Subroutines 

Have you ever watched an arcade game and wondered how all of the action 
appears to happen at the same time? For instance, a fire might flicker in a 
corner, a person walks across the screen, and a bird flies overhead. Anyone 
who's tried this with BASIC knows that BASIC's too slow-the action ap
pears choppy. Well, with the following machine language subroutines, you 
too can have sophisticated arcade-style action, and you don't have to under
stand machine language. 

I'll show you two techniques that can be added to your basic game
alternating characters and horizontal motion. Both techniques apply the 
interrupt-driven subroutine which appears to work concurrently with BASIC. 

I Alternating Characters 
This technique allows you to place any character anywhere on the screen 
and replace that character with a second one of your choice. This repeats 
indefinitely. You can also control the frequency with which characters alter
nate. Type in Program 1 and save it before running. 

If you typed everything correctly, you will see the letters A and B 
alternating very rapidly in the upper-left corner (screen position 7680). 
Now, let's see how you can make your own alternating characters. 

First, select where you want to place your character. Use the following 
table, where x is your screen location, to determine which values to place in 
lines 300 and 400. 
Desired Screen 

Location 
7680 to 7935 
7936 to 8185 

Column A 
Line 300 
x-7680 
x-7936 

Column B 
Line 400 

30 
31 

For example, let's say you select the upper-right screen corner, location 
7701. In line 300, replace 0 with 21 (7701 - 7680). Line 400 would then 
remain with a value of 30. 

Second, select which characters you want to alternate and place one in 
location 1 (line 600) and the other in location 2 (line 700) using screen dis
play codes. For instance, if you want to alternate an up arrow with a back 
arrow, place POKE 1,30 and POKE 2,31 in lines 600 and 700, respectively. 
(For special effects, use programmable characters. These are explained in 
your Programmer's Reference Guide.) 

Third, adjust the frequency of the alternating characters. This is accom
plished by POKEing various numbers in locations 37158 and 37159 (lines 

38 



Utilities 

900 and 1000). Try 37158,255 and 37159,100. As a rule of thumb, higher 
values in 37159 will slow the frequency, and vice versa. 

A disassembly follows for those who are interested in machine lan
guage. This should not be typed. 
LOA $01 
STA $1EOO 
LOX $02 
STA $02 
STX $01 
IMP $EABF 

I Horizontal Motion 
This routine allows you to move any character from the left side of the 
screen to the right, continuously. You pick the character, the original screen 
location, and the speed. Type in Program 2. In the DATA statements, you 
will see variables X, Y, and Z. Substitute the following values each time the 
variables appear: X = 0, Y = 30, Z = 1. Save the program and run. 

If you typed in everything correctly, you will see a character (the letter 
A) moving across the screen continuously. Now, let's see how you can pro
gram your own horizontal motion. 

First, select the initial screen location. Next, go to the previous table 
and determine the values for columns A and B. Set the variables X and Y in 
the DATA statements equal to columns A and B, respectively. 

Second, set the variable Z equal to your character code. 
Third, adjust the speed with various values in locations 37158 and 

37159 in lines 600 and 700. 
For those of you who are interested, a disassembly follows: Again, do 

not include this in your program. 
LOA $01 
TAX 
LOA #$20 
STA $1EOO,X 
INX 
CPX #$15 
BEQ New 
LOA #$01 
STA $1EOO,X 
STX $01 
IMP $EABF 

New LOA #$01 
TAX 
STX $01 
STA $1EOO,X 
IMP $EABF 

39 



I Utilities 

I Some Final Comments 
These routines will place a white character in the specified screen location. 
That's why I have chosen a black screen. If you change the screen color to 
white, be sure to color the area of character movement. 

The machine language is independent of BASIC and will continue even 
after BASIC ends. To stop, hit RUN/STOP-RESTORE at the same time. 

Program 1. Alternating 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

100 FORI=B28TOB41:READA:POKEI,A:NEXT :rem 15 
200 DATAI65,1,141 :rem 103 
300 DATA0 : rem 221 
400 DATA30 : rem 17 
500 DATAI66,2,133,2,134,1,76,191,234 :rem 17 
600 POKEl,1 :rem 83 
700 POKE2,2 :rem 86 
800 POKE37166,64:POKE78B,60:POKE7B9,3:POKE37166,192:POKE36879 

,8 :rem 140 
900 POKE37158,255 :rem 152 
1000 POKE37159,255 :rem 193 
1100 GOT01100 :rem 189 

Program 2. Moving 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

100 FORI=828T0861:READA:POKEI,A:NEXT :rem 17 
200 DATAI65,1,170,169,32,157,X,Y,232,224,21,240,10,169,Z,157 

:rem 24 
300 DATAX,Y,I:34,1,76,191,234,169,Z :rem 34 
400 DATAI70,134,1,157,X,Y,76,191,234 :rem 94 
500 POKEl,I:POKE37166,64:POKE788,60:POKE789,3:POKE37166,192:P 

OKE36879,8 :rem 128 
600 POKE3715B,255 :rem 149 
700 POKE37159,255 :rem 151 

40 



Steve I 
Henrickson Screen Saves 

I had been working on a technique to save a "picture" of the screen on tape 
for future reference. In my attempts to do so in BASIC, I found it either took 
an excessive amount of time or far more memory than I could spare. 

It wasn't until I read the article by Sheila Thornton in COMPUTEf's Sec
ond Book of VIC that I was inspired to use the VIC Kernal routine she dis
cusses in her "Block SAVE and LOAD" article. 

Saving the characters that make up a picture is pretty straightforward. 
This is done on the unexpanded VIC by saving the section of memory con
taining screen memory (7680-8185). The inability to use the Kernal to save 
memory above location 32766 ($7FFE) makes it necessary to relocate the 
color codes located at 38400-38911 to some place that the Kernal can save. 

Lines 170-190 contain the loop that relocates the color codes by PEEK
ing into the old location (OL) and POKEing them into the new location (NL). 
I chose the two pages (512 bytes) just ahead of screen character codes. This 
also is the top of available memory. By doing this I was able to save color 
and characters as one block of memory (7168-8185). Line 120 resets the top 
of arrays and memory pointers to protect this section of memory. 

The 39 bytes of machine code are POKEd into the BASIC input buffer in 
lines 210-240. The pointers for strings and arrays will be moved when the 
Kernal routine LOAD is called. Therefore, in lines 360-380 I've stored these 
pointers just behind the machine code in the input buffer, then reset them 
after the SYS command in line 390. This brings the total number of bytes re
quired of the input buffer to 43. 

In line 250 I've placed the length of the filename in location 0 so that 
the Kernal routine SETLFS can find it. Because I need to know how much 
room is necessary for variables and arrays, I've assigned arbitrary values to P 
and V, which will be assigned new values later. I need to know how much 
memory is taken for variables and arrays because the filename must be 
placed where the Kernal routine SETNAM can find it. This is done in lines 
260-290. SETNAM can find it by looking at locations 49 and 50 (top-of
arrays pointer). 

Lines 450-470 convert the starting and ending addresses to high 
byte/low byte format and POKE them to available locations at zero page. By 
directing the SAVE and LOAD routines here, we can control what memory 
will be saved or loaded. 

Once the LOAD routine is called, the memory from 7168-7679 can be 
transferred back to color memory. This is done with the loop in lines 
480-520. 

41 



Utilities 

I've intentionally stretched the program out to make it easier to follow. 
It would save several bytes if it was crunched before merging with another 
program. 

I Running the Program 
Type in "Screen Saves" and change the 8 in line 540 to a 1 if you're using 
tape. Save the program before running it. Line 130 allows you to write or 
draw to the screen using the keyboard. Once you have the desired picture, 
press the f1 key to save it. Tape users have about ten seconds to press PLAY 
and RECORD before the computer destroys the picture by printing PRESS 
RECORD & PLAY ON TAPE. The picture is saved using the filename SCN. 
The filename can be changed in line 210. 

The picture can be loaded by pressing f3. You may now alter the pic
ture, if desired. 

Screen Saves 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

120 POKE52,28:POKE56,28 :rem 41 
130 GETA$:PRINTA$; :rem 64 
140 IFPEEK(197)=39THENE=8186:GOTOI70 :rem 119 
150 IFPEEK(197)=47THENE=0:A=I:GOT0200 :rem 179 
160 GOT0130 : rem 100 
170 NL=7168:0L=38400:A=0 :rem 62 
180 FORM=1 T0511 :rem 117 
190 POKENL,PEEK(OL):OL=OL+l:NL=NL+l:NEXT :rem 41 
200 RESTORE:A=A+l :rem 11 
210 B=7168:R=554:N$="SCN" :rem 96 
220 FORT=IT039:READD :rem 230 
230 POKER+T,D :rem 5 
240 NEXT :rem 213 
250 L=LEN(N$):POKE0,L :rem 211 
260 P=I:V=I:S=256*PEEK(50)+PEEK(49)+L :rem 69 
270 FORT=ITOL :rem 49 
280 POKES-T,ASC(RIGHT$(N$,T» :rem 214 
290 NEXT :rem 218 
300 SYS555 :rem 49 
310 V=B:P=252:GOSUB450:IFE=0THEN360 :rem 95 
320 V=E:P=254 :rem 207 
330 GOSUB450 :rem 175 
340 SYS574 :rem 54 
350 GOT0140 :rem 102 
360 FORT=0T05 :rem 25 
370 POKER+T,PEEK(45+T) : rem 36 
380 NEXT :rem 218 
390 SYS584 :rem 60 
400 FORT=0T05 :rem 20 

42 



Utilities I 
410 POKE45+T,PEEK(R+T) :rem 31 
420 NEXT :rem 213 
430 IFA=2THEN480 :rem 161 
440 GOT0140 :rem 102 
450 POKEP,INT(V/256) :rem 162 
460 POKEP-1,V-256*PEEK(P) :rem 179 
470 RETURN :rem 123 
480 OL=7168:NL=38400 :rem 90 
490 FORM=1 T0511 :rem 121 
500 POKENL,PEEK(OL) :rem 155 
510 OL=OL+l:NL=NL+1 :rem 108 
520 NEXT :rem 214 
530 GOT0140 :rem 102 
540 DATA169,1,162,8,160,0,32,186,255 :rem 28 
550 DATAI65,0,166,49,164,50,32,189,255,96 :rem 40 
560 DATA169,251,166,253,164,254,32,216,255,96 :rem 239 
570 DATA169,0,166,251,164,252,32,213,255,96 :rem 129 

43 



John I 
Hollenberg Tape to Disk 

When upgrading from a cassette drive, new owners of disk drives face the 
daunting task of copying all their tape programs to disk. You could always 
use your tape drive when you need those programs, but once you've used a 
disk drive, you quickly get spoiled. It seems unjust to have to go back to 
slow tape LOADs, but equally unfair to have to copy your entire tape library 
to disk. What you need is a program to do this for you. After all, automation 
is one of the strengths of a computer. "Tape to Disk," which requires 32K of 
memory, can copy an entire tape of programs to disk. All you do is insert a 
disk with room for the programs, insert the tape, press PLAY, and enter a 
SYS command. The machine language works for you. You don't need to 
understand how it works to use it, though. 

The program here is a BASIC loader that POKEs the machine language 
into high memory. The rest of memory is used to load the programs from 
tape in order to save them to disk. Type in the program and save it-you'll 
probably want a copy for the future. When you run the program, you'll be 
asked to wait while the machine language is POKEd in. It will then give you 
a command to type when you want to start the process: SYS 28672. At this 
point, insert the tape and rewind it. Insert the disk (be sure there's room for 
the tape programs), and then enter SYS 28672. You'll be asked to press 
PLAY on the recorder, and the process begins. The screen shows each tape 
program being loaded from tape, then saved to disk. You don't have to do a 
thing. The program doesn't know when to stop, though. After all the pro
grams have been copied to disk, just press RUN/STOP-RESTORE to stop 
the process. Don't try to exit the program with just RUN/STOP-it won't 
work. If you get a disk error (flashing red light) during the transfer, you may 
have to rewind the tape back to the beginning of the program that failed to 
transfer, then figure out what went wrong with the disk, before you type 
SYS 28672 again. 

Tape to Disk won't copy machine language programs, copy-protected 
tapes, or any program bigger than 24K. But you'll find it invaluable for copy
ing those tapes full of BASIC programs that everyone seems to accumulate. 

Tape to Disk 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 PRINT"(CLR}PLEASE WAIT ... " :rem 62 
20 FORI= 28672 TO 28874 :READDC:POKEI,DC:NEXTI :rem 140 
30 PRINT" (2 DOWN }ENTER (RVS }SYS28672 {OFF} TO": PRINT" {DOWN }BEG 

IN TRANSFER." : rem 55 
40 DATA 32,146,112,234,234,234,234,234,169,0,162 :rem 48 
50 DATA 1,160,0,32,186,255,169,0,32,189,255 :rem 66 
60 DATA 169,0,162,1,160,18,32,213,255,32,161 :rem 102 

44 



Utilities I 
70 DATA 112,169,1,162,8,160,255,32,186,255,169 :rem 226 
80 DATA 16,162,65,160,3,32,189,255,173,62,3 :rem 72 
90 DATA 201,4,240,79,201,16,240,79,173,61,3 :rem 61 
100 DATA 133,251,173,62,3,133,252,174,63,3,172 :rem 202 
110 DATA 64,3,169,251,32,216,255,76,8,112,173 :rem 167 
120 DATA 61,3,133,251,173,62,3,105,14,133,252 :rem 143 
130 DATA 173,64,3,105,14,141,64,3,169,251,76 :rem 113 
140 DATA 73,112,173,61,3,133,251,173,62,3,105 :rem 149 
150 DATA 2,133,252,173,64,3,105,2,141,64,3 : rem 253 
160 DATA 169,251,76,73,112,96,24,76,87,112,24 : rem 183 
170 DATA 76,112,112,169,255,133,55,169,90,133,56 :rem 71 
180 DATA 32,66,198,32,231,255,96,32,183,255,234 :rem 26 
190 DATA 234,201,0,208,1,96,162,0,189,191,112 :rem 156 
200 DATA 32,210,255,232,224,10,208,245,76,8,112 :rem 246 
210 DATA 234,234,234,13,32,69,82,82,79,82,32 :rem 123 
220 DATA 33,13,13,32,32 :rem 86 

45 



"Super Dump" requires the use of the Super Expander cartridge and adds a 
high-resolution screen dump to the menu of Super Expander function com
mands. With Super Dump, the f8 key becomes the Screen Dump key when 
your VIC is in the hi-res, multicolor, or mixed mode, but retains its function 
as the LIST key when in the text mode. 

After entering the program, be sure to save it to tape or disk before run
ning: The BASIC part of Super Dump clears itself from memory to make 
room for your programs. After saving, run the program. Within a few sec
onds, the screen will blink, and the message READY will appear. Now, try 
entering a graphics program, such as drawing a circle, and then clear the 
screen. Next, hold down the SHIFT key and hit the f8 key. Your program 
will list as usual. Notice that Super Dump is gone. 

Run your graphics program, and when the image is completed on the 
screen, hold down the SHIFT key and hit f8 once again. This time, the f8 
key signals your VIC to send the image of the screen to the printer, where 
it's copied. 

In your graphics program, if you want to return to the text mode under 
program control, use the GRAPHIC 0 command instead of the GRAPHIC 4 
command. The reason for this is the Super Expander's system architecture: 
When a program is written with the Super Expander, BASIC memory starts at 
the same location as BASIC memory in an unexpanded VIC, and not in the 
expansion RAM area. When a GRAPHIC command is executed, the Super 
Expander literally picks up the BASIC program and moves it to the expansion 
RAM area, then uses the VIC's memory for bitmapping the screen. Reenter
ing the text mode with the GRAPHIC 4 command transfers the program 
back to the VIC's memory. With the memory pointers changed by Super 
Dump, the GRAPHIC 4 command has a tendency to mess things up. How
ever, reentering the text mode via the GRAPHIC 0 command leaves your 
program in the expansion area, where it agrees with the memory pointers. 
You still have the same amount of memory for your graphics programs it's 
just in a different location. 

Super Dump 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

IB FORI=3922T04B95:READA:POKEI,A:NEXT :rem 66 
2B GRAPHIC2:GRAPHICB:POKE51,81:POKE52,15:POKE55,81:POKE56,15 

3B KEY8,"SYS3922"+CHR$(13):NEW 
4B DATA8,173,2BB,2,24B,7,2Bl,4,24B,3 
5B DATA76,98,15,76,237,15,169,B,133,89 
6B DATAI33,87,169,16,133,88,169,4,32,177 

46 

:rem 142 
:rem 2BB 
:rem 254 
:rem 15B 
:rem 248 



70 DATA255,169,0,9,96,32,147,255,169,8 
80 DATA32,168,255,162,0,32,185,15,232,224 
90 DATA20,240,16,24,165,87,105,160,133,87 
100 DATA165,88,105,0,133,88,76,127,15,169 
110 DATA13,32,168,255,56,165,87,233,217,133 
120 DATA87,165,88,233,11,133,88,230,89,169 
130 DATA23,197,89,208,204,32,174,255,32,231 
140 DATA255,40,96,169,128,133,90,169,1,133 
150 DATA91,169,0,133,92,168,177,87,37,90 
160 DATA240,7,24,165,92,101,91,133,92,165 
170 DATA91,10,133,91,200,192,7,208,233,24 
180 DATA165,92,105,128,32,168,255,165,90,74 
190 DATA133,90,208,209,96,169,147,32,210,255 
200 DATA162,0,138,157,0,2,232,224,89,208 
210 DATA248,32,156,198 

Utilities 

:rem 150 
:rem 15 
:rem 18 
:rem 29 

:rem 123 
: rem 91 

:rem 121 
:rem 77 

:rem 248 
:rem 17 
:rem 7 

:rem 135 
:rem 180 
:rem 214 
:rem 114 

47 



fa~ I Hold a Mirror 
We are all familiar with programs that take information in one form and put 
it out in another., Or programs that calculate data and display it. Here, we 
will look at two programs which allow your computer to take a look at itself 
and tell us what it sees. The first program is a simple disassembler, and the 
second graphically displays the status of the various VIC input devices. 

We are constantly entering programs into our computers and running 
them, usually unaware that what is running our programs is actually another 
program. Locked into the upper 16K of memory are the BASIC and Kernal 
ROMs (Read-Only Memories). These are machine language programs-pro
grams written in the binary code that digital computers use to process infor
mation. These machine language programs may well be larger than any 
BASIC program we will write for them to run. They control everything we 
can do and-often more frustrating-everything we cannot do. 

We could do more if we knew exactly how the computer works in
ternally. Unfortunately, this understanding is hard to come by. BASIC pro
grams are relatively easy to understand, because BASIC uses English-like 
instructions such as PRINT and INPUT. But machine language is stored in 
the computer's memory as numbers which mean little to most people. Before 
we can make use of the multitude of information stored in the computer, we 
must have a translator to turn the numbers into symbols that are meaningful 
to us noncomputers. This is the purpose of the disassembler. 

I The Disassembler 
A disassembler is just the opposite of an assembler. Few machine language 
programmers actually program in pure binary numbers any more because the 
task is so tedious. Instead, they use assemblers, utility programs which allow 
them to program machine language in three-letter abbreviations called 
mnemonics. The assembler then" assembles" the program-converts it into 
true machine language. A dissassembler reverses the process, translating the 
machine language numbers back into three-letter abbreviations we can more 
easily understand. 

Confused? Here's a simple example. Let's say a machine language pro
grammer wants to store the number 15 in memory location 36879 (this will 
change the VIC's screen color to black and the border color to yellow). In 
BASIC, we would use the POKE instruction, like this: 
POKE 36879,15 

When we pressed RETURN, the number would be stored and the screen 
colors would change. Here is the same thing written in machine language 
with an assembler: 

48 



Utilities 

LOA #$OF 
STA $900F 

LDA # stands for "LoaD Accumulator with the number immediately 
following." The accumulator is a temporary place for storing short numbers 
(0-255) inside the microprocessor chip that runs the computer. The symbol 
$OF is how the number 15 looks in hexadecimal, a base 16 numbering system 
(don't worry about this now). 

STA means "STore Accumulator." It tells the VIC to take the number in 
the accumulator (the number we just loaded it with) and store it at the 
following memory location. The symbol $900F is the hexadecimal equivalent 
of 36879. 

The next thing the programmer would do is use the assembler to "as
semble" the mnemonics into machine language. Here is what the assembler 
would produce: 
A9 OF 
80 OF 90 

This is what machine language looks like in hexadecimal. Converted 
again to decimal, our familiar base 10 numbering system, the machine lan
guage would be stored in the VIC like this: 
169, 15, 141, 15, 144 

Now you know why machine language subroutines show up in BASIC 
programs as DATA statements. The numbers in the DATA statements are 
simply the decimal equivalents of the machine language instructions. 

You should now realize exactly what a disassembler does. It just re
converts those decimal numbers back into the mnemonics that we started 
with. 

The disassembler included with this article is particularly suited for the 
VIC, in that it is small and relatively fast. The program first prompts for an 
output device to display the mnemonics. The screen, device 3, is the default. 
Next, it asks for the starting and ending memory addresses in hexadecimal. 
Some computer books have conversion charts in the back if you need to con
sult one. The program then proceeds to disassemble instructions between 
these two points. 

Memory locations that are not instructions are output as single bytes of 
data. Sometimes the disassembler will interpret stray numbers in memory as 
instructions, too. In your computer you'll find machine language, ASCII 
strings, keywords, address vectors, program links, and all sorts of infor
mation. Consult the table for interesting places to look inside the VIC-20. 
You can also refer to the memory maps in the back of your manuals. Even
tually, it may be your pathway into the world of machine language. 

49 



I Utilities 

I Key test 
This program is a VIC-20 input device diagnostic as well as an excellent 
demonstration of the VIC's capabilities. Various VIC input devices and their 
status are displayed about the screen. The upper-left corner of the screen 
shows the current status of the joystick and its fire button. 

The positions of the paddle controllers determine the pitch of the bass 
and soprano voices. The paddle buttons will move the center dot of the joy
stick display to the right or left. 

The center of the screen contains a display of the VIC keyboard. Normal 
keys are in white, function keys are in yellow, cursor and control keys are 
similarly color-coded. The number keys are colored according to the color 
written on them. 

When a key is pressed, it reverses on the screen. You will have to hold 
down the key and wait a couple of seconds for the screen polling routines to 
see it. Holding more than one key will cause all of them to reverse. By poll
ing the keyboard ourselves, we are able to detect multiple keys. The VIC de
coding routine would have given us only the highest key pressed. 

You may notice that when you press more than two keys at once, some 
extra keys may light up. This is due to the way the keyboard is built. If you 
have the 8 X 8 table of key rows and columns handy (see "Extended Input 
Devices," by Mike Bassman and Salomon Lederman, COMPUTEt's First Book 
of VIC), you will notice that if you press three keys together, the one that 
completes a "rectangle" on the chart will light. 

If a letter key is pressed and the right SHIFT key is depressed, the right
hand graphics character on the key will appear reversed. For example, press 
A,S, Z, and X simultaneously, and hold the right SHIFT key down. The four 
card suits will appear. Or hold U, I, J, and K down and press the right SHIFT 
key; a large circle will appear. This trick does not apply to the left SHIFT key 
or left graphics character due to their random arrangement on the keys. 

At the bottom of the screen you see a circle followed by the word TAPE. 
The circle is full if a tape cassette key is down, empty otherwise. 

The first line of the program disables interrupts, so you may have to hit 
RUN/STOP-RESTORE several times to get a response. When typing in Pro
gram 2, you will want to change the SYS 0 on the first line to SYS I, until 
you have it debugged. The program will break if Q, -, STOP, CTRL, I, 2, 
space bar, or Commodore keys are pressed while you are using SYS I, but 
you will always be able to regain control. 

50 



Utilities I 
Program 1. Disassembler 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 H$="0123456789ABCDEF":DIMR${,255),T%(3) :FORI=3T00STEP-l:T%( 
I)=16tI:NEXT :rem 232 

20 PRINTCHR$( 147); "6502 DISASSEMBLER" :PRINT:FORX=0T0255 :READR 
$ (X) :NEXT : rem 129 

30 DV=3:INPUT"OUTPUT DEVICE#";DV:PRINT:IFDV<00RDV>255GOT030 
:rem 91 

40 A$="FFFF": B$="C38A" :GOSUB230 :OPENl, DV, 1, "ASSEM. OUT": CMDI 
:rem 207 

50 FORPC=STOE:S=PEEK(PC):A=PC::GOSUB2512J:PRINT" "; :A=S:GOSUB25 
o :rem 162 

60 OP$=R$(S):IFOP$=""THENPRINT" .BYTE";:GOT0190 :rem 55 
70 PRINT" ";LEFT$(OP$,3);" ";:U=ASC(RIGHT$(OP$,1»-65:rem 142 
80 ONUGOT0100,110,120,120,130,140,140,190,150,160,170,180 

:rem 118 
90 PRINT"A";:GOT0190 :rem 195 
100 PRINT"#"; :GOTOl10 :rem 197 
110 GOSUB210:GOT0190 :rem 178 
120 GOSUB210:PRINT", ";CHR$(U+85); :GOT0190 :rem 159 
130 GOSUB220:GOT0190 :rem 181 
140 GOSUB220:PRINT", ";CHR$(U+82); :GOT0190 :rem 159 
150 PC=PC+l:A=PEEK(PC):A=PC+A+l-(AAND128)*2:GOSUB250:GOT0190 

:rem 16 
160 GOSUB200:PRINT",X)";:GOT0190 :rem 169 
170 GOSUB200:PRINT"),Y";:GOT0190 :rem 171 
180 PRINT"(";:GOSUB220:PRINT")"; :rem 138 
190 PRINT:NEXT:PRINT:CLOSEDV:END :rem 194 
200 PRINT" ( " ; : rem 198 
210 PC=PC+1 :A=PEEK( PC) :GOSUB250: RETURN : rem 126 
220 A=PEEK(PC+2):GOSUB250:GOSUB210:PC=PC+l:RETURN :rem 41 
230 PRINT"ENTER START,END", "IN HEXADEClMAL":INPUTB$,A$:GOSUB2 

40:E=S:A$=B$ :rem 243 
240 S=0:FORI=lTOLEN(A$) :B=ASC(MID$(A$,I,l»-48:S=lG*S+B+(B>9) 

*7:NEXT:RETURN :rem 170 
250 X$="":FORI=3T00STEP-l:H%=A/T%(I) :IFH%=0ANDX$=""ANDI>lGOTO 

270 : rem 18 
260 X$=X$+MID$(H$,H%+l,l):A=A-H%*T%(I) :rem 213 
270 NEXT:PRINTX$; : RETURN :rem 112 
300 DATA BRKI,ORAK""ORAC,ASLC"PHPI,ORAB,ASLA",ORAF,ASLF" 

BPLJ,ORAL""ORAD :rem 38 
310 DATA ASLU"CLCI,ORAY""ORAX :rem 167 
320 DATA ASLG"JSRF,ANDK",BITC,ANDC,ROLC"PLPI,ANDB,ROLA"BI 

TF,ANDF,ROLF"BMIJ :rem 180 
330 DATA ANDC""ANDU,ROLU"SECI,ANDY""ANDG,ROLG"RTII,EORK 

""EORC :rem 208 
340 DATA LSRC"PHAI,EORB,LSRA"JMPF,EORF,LSRF"BVCJ,EORL""E 

ORD :rem 6 
350 DATA LSRD"CLII,EORH""EORG,LSRG"RTSI,ADCK""ADCC,RORC 

, , PLAI : rem III 

51 



Utilities 

360 DATA ADCB,RORA"JMPM,ADCF,RORF"BVSJ,ADCL""ADCD,RORD"S 
EII,ADCH", :rern 118 

370 DATA ADCG""STAK",STYC,STAC,STXC"DEYI"TXAI"STYF,STAF 
,STXF"BCCJ :rem 22 

380 DATA STAL",STYD,STAD,STXE"TYAI,STAH,TXSI" :rem 48 
390 DATA STAG",LDYB,LDAK,LDXB"LDYC,LDAC,LDXC"TAYI,LDAB,TAX 

I , , LDYF , LOAF : rem 71 
400 DATA LDXF"BCSJ,LDAL",LDYD,LDAD,LDXE, :rem 22 
410 DATA CLVI,LDAH,TSXI"LDYG,LDAG,LDXH"CPYB,CMPK",CPYC,CMP 

C,DECC"INYI,CMPB :rem 183 
420 DATA DEXI" CPYF, CMPF, DECF, , BNEJ , CMPL, , , , C~1PD : rem 151 
430 DATA DECD"CLDI,CMPH""CMPG,DECG"CPXB,SBCK",CPXC,SBCC, 

INCC"INXI,SBCB :rem 139 
440 DATA NOPI"CPXF,SBCF,INCF"BEQJ,SBCL""S8CD,INCD"SEDI,S 

BCH""SBCG,INCG, :rem 248 

Program 2. Key test 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

On line 10 of this program, change SYS a to SYS 1 until you are certain the program has been entered correctly. 

10 POKE0,120:POKEl,96:SYS0:PO~E56,29:POKE52,29:CLR:V=36864:PO 
KEV+15,10 :rern 191 

20 DD=37154:SC=7680:SD=V+10:PD=V+8:PA=DD-3:Q=7424:M=255:M1=12 
7:M2=128:QA=SC-l :rem 199 

30 M=255:Ml=127:M2=128:M3=63:T4=16:T5=32:T6=64:T7=128:TP=8164 
:rem 202 

50 DIMJ% (9) , K% (63), T% (7) : FORI=0T063: READJ: K% (I) = (ABS (,J) +SC+33 
0)*«J<0)*2+1):NEXT :rem 182 

60 JY=4:J%(9)=46+SC:FORI=0T02:FORJ=0T02:J%(J+I*3)=I*22+J+69+S 
C:NEXTJ,I :rem 159 

70 POKEV+14,15:FORI=0T07:T%(I)=2tI:NEXT:DEFFNP(X)=INT«M-PEEK 
(X»/2)+M1 :rem 77 

80 Ql=Q+l:POKEV+14,15:FORI=QTOQ+15:READJ:POKEI,J:NEXT:rem 115 
90 PRINT"{CLR}{WHT}" :rem 210 
100 PRINT"{RIGHT}U*****I","VIC INPUT" :rem 191 
110 PRINT"{RIGHT}-{RED}H{HHT}{4 RIGHT}-" :rem 166 
120 PRINT"{RIGHT}={RIGHT}{GRN} {WHT} {GRN} {WHT}{RIGHT}-","DE 

VICE TEST"; - : rem 86 
130 PRINT"{RIGHT}-{RIGHT} {CYN}Q{HHT} {RIGHT}-" :rem 235 
140 PRINT" {RIGHT!={RIGHT} {GRN} TWHT} {GRN} {wHT} {RIGHT}-" " 

{a SPACES}" - :rem 1 
150 PRINT" {RIGHT} - {5 RIGHT} -" : rem 207 
160 PRINT"{RIGHT}J*****K","Ta SPACES}" :rem 74 
170 PRINT"{2 DOHNJ{RVS}(22 SPACES}"; :rem 216 
180 PRINT" {YEL} {OFF}COMMODORE{RVS}gK3VIC20{WHT} {4 SPACES} 

{RED} {OFF}Q{RVS} {WHT} "; :rem 12 
190 PRINT" {44 SPACES}"; : rem 166 

52 



utilities 

195 PRINT"U********************I"; :rem 73 
200 PRINT"- {OFF}~12{RED}3(CYN}4{PUR}5{GRN}6{BLU}7{YEL}8{WHT} 

90+-£{CYN} {2 SPACES} {WHT} {RVS }gGHOFF} {YEL} Fl {RVS} (\lliT}-
"; : rem 90 

210 PRINT "_ {OFF}{ GRN} {WHT} QWERTYU IOP@*tf RED J( RVS}{ 2 SPACES} 
{WHT}g'GHYEL} {OFF}F3(RVS} {WHT}-"; :rem 151 

220 PRINT"-{OFF} {RED} [RVS} {PUR} ("WHT} {OFF}ASDFGHJKL: ;=[CYN} 
{2 SPACES} {WHT} {RVS}O {YEL} (OFF }F5 {RVS} (HHT} -" ; : rem 212 

230 PRINT"-{OFF}{GRN}{2 SPACES} [WHT}ZXCVRNM, ./(GRN}(2 SPACES} 
(CYN} [2" SPACES} {mIT} [RVS }gG~ [YEL} {OFF }F7 {RVS} (\lliT} _"; 

:rem 254 
2413 PRINT"-=~2 T~~{OFF} {8 SPACES} (RVS}Q~4 TH4 SPACES}-"; 

:rem 113 
PRINT"J********************K"; :rem 56 
PRINTI{DO~m}{OFF}{CYN}vlTAPE"; :rem 231 

250 
260 
300 

320 

FORR=.T07:POKEQ1,T%(R):SYSQ:N=PEEK(QA):P=R*8:IFR=4THENX=( 
NANDT6)+T7 :rem 24 
FORC=.T07:Z=K%(P+C):FORG=ABS(Z)TOG-(Z<.):W=PEEK(G)ANDM3 

350 
360 
380 
390 
600 

610 
620 

630 
690 

1000 
HH0 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 

:rem 132 
IFNTHENIFT% (C) ANDNTHENPOKEG, \'HX :GOT0380 : rem 26 
POKEG,W :rem 146 
NEXT:NEXT:IFR=3THENX=T7 :rem 45 
GOSUB600:NEXT:POKETP,87+6*«JANDT6)=.):GOT0300 :rem 24 
POKEDD,M1:J=(PEEK(PA)ANDM1)OR(PEEK(PA+l)ANDT7) :I~JANDT5TH 
ENPOKEJ%(9),87:GOT0620 :rem 128 
POKEJ%(9),81 :rem 84 
I=4+3*«(JAND4)=.)-«JAND8)=.»-«(JANDT4)=T4)+(J>=T7) 

:rem 29 
IFI<>JYTHENPOKEJ% (I) ,81 : POKEJ% (JY) , T5 :JY=I : rem 110 
POKEDD,M:FORI=.T01:POKESD+I*2,FNP(PD+I):NEXT:RETURN 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

3,5,7,9,11,13,15,17 
2,26,28,30,32,34,36,-59 
24,47,49,51,53,55,57,82 
45,68,70,72,74,76,78,81 
-95,69,71,73,75,77,-79,-19 
67,48,50,52,54,56,58,-41 
25,27,29,31,33,35,37,-63 
4,6,8,10,12,14,16,-85 
169,127,73,255,141,32,145,173 
33,145,73,255,141,255,29,96 

:rem 68 
:rem 123 

:rem 71 
:rem 93 

:rem 105 
:rem 253 
:rem 140 
:rem 130 
:rem 226 
:rem 135 

:rem 42 

53 



C. D. 
Lane 

Compressed 
Keyword Lister 

Even though your computer's operating system is burned into ROM, the de
signers have left entrances into it for the purpose of extending it. One such 
entrance is the CHRGET subroutine in zero page, the often used and dis
cussed wedge for adding to BASIC. The vectors are another type of entrance 
into the operating system. 

Vectors are addresses written into page 3 of RAM. Various system sub
routines execute along and suddenly jump indirectly through these addresses 
in RAM. These jumps cause execution to continue at the next instruction 
after the jump; in other words, they appear to do nothing. However, the 
jumps provide a way out of and back into the computer's ROMs. 

I Keywords and Tokens 
BASIC keywords are stored as single bytes, or tokens, inside the computer. 
When programs are entered, the keywords are tokenized, or crunched, and 
when the program is listed, the tokens are translated back into keywords. In 
the VIC the routine that crunches keywords allows them to be entered in an 
abbreviated form. For most keywords, typing the first two letters, with the 
second one SHIFTed, is enough to enter the keyword. Due to similarities in 
spelling, some keywords use three letters, with the third SHIFTed, as an 
abbreviation. Other keywords have no abbreviation at all. 

Although keywords are entered in abbreviated form, they list in full 
form, due to the tokenizing procedure. BASIC allows 88 bytes per logical 
line, but when editing lines we have listed, we are editing expanded 
keywords. So even though we have filled the line as much as the editor will 
allow, it can still handle more when crunched. If we fill out a line with 
abbreviated keywords, we can produce even longer lines that will list cor
rectly, but we will not be able to edit. 

One solution to this problem would be to produce listings in the abbre
viated keyword format, which we will edit by adding normal or abbreviated 
keywords and which the crunching routine could read back in. Since we 
have a link into the listing routine, we can do just that. This solution will not 
guarantee producing 88-byte lines every time, but it will allow us to come as 
close as possible and still be able to do screen editing. In fact, in some cases, 
it will be possible to produce lines longer than the 88-token limit. Caveat 
programmer! 

54 



Utilities 

I Abbreviating Keywords 
There are three special cases when producing the shortened keywords. 
Usually, we print the first character as is and SHIFT the second. Two-letter 
keywords (TO, ON, IF, OR, and so on) do not require abbreviating and are 
printed normally. Some keywords need two normal characters and a 
SHIFTed character since they start with the same letters as other keywords 
(COSUB, STR$, RETURN, and so on). Finally, there are exceptions which are 
always printed out in full (INPUT, LaC, NEW, and so on). The first case is 
handled by a specific test, and the other two are handled by a short table 
search. One exception which doesn't fall into the above groups is PRINT 
which prints out as a question mark. 

The compressed-listing routine has two user entry points, INIT and 
KILL. INIT replaces the vector in RAM with the address of the new LIST 
routine. KILL restores the original vector, returning normal listing. INIT tests 
the high byte of the vector to make sure that it has not been invoked twice 
without an intervening KILL. 

BASIC keywords are stored in one page (256 bytes) in the beginning of 
the BASIC ROM. The last letter of each keyword is SHIFTed, marking the 
end of the keyword. The letters of the keywords are stored in ASCII format, 
not screen code notation, so a SHIFTed letter has its highest bit turned on. A 
BMI test detects this. The routine uses a PRINT subroutine to output charac
ters, the only fixed ROM address used besides the keyword table. The rou
tine always returns to the normal LIST routine through the saved vector. 

I The Loader 
The BASIC program provided will load the routine into a VIC-20 with any 
memory configuration. It partitions off the highest page of memory from 
BASIC and relocates the machine language routine. The machine code is 
stored in hexadecimal in the DATA statements of the program. Line 90 is a 
one-line subroutine that will convert any length hexadecimal string to a deci
mal value. The locations of the INIT and KILL routines are printed out when 
the loader is run since they depend on the amount of memory in the com
puter. Loading takes about ten seconds, and for an unexpanded VIC you 
should see: 
RUN 
SYS( 7442 ) = INIT 
SYS( 7469 ) = KILL 
DONE 

READY. 

55 



Utilities 

Doing a subsequent SYS7442 (on an unexpanded VIC) will set the new 
link and a subsequent LIST will be in compressed format. Even though the 
listing looks strange, you can still use screen editing, adding normal or com
pressed keywords. Since the same listing routine is used independently of 
the output device, you can produce abbreviated listings on the printer or on 
any other output device. Doing a SYS to the KILL routine restores normal 
listing, and another call to INIT will turn compressed listing back on. Com
pressed listing does not affect SAVEs or any other BASIC function. 

Compressed List 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 M=PEEK(52)-1:POKE52,M:POKE56,M:POKE51,0:POKE55,0:CLR:M=PEE 
K(52):B=M*256:PC=0 :rem 217 

20 H$=112 1 :GOSUB90:PRINT I SYS(ID+B") = INIT" :rem 150 
30 H$=12D I :GOSUB90:PRINT I SYS(ID+B") = KILL" :rem 162 
40 READH$:GOSUB90:IFD<>PCTHENPRINT"ERROR IN ";D+100:STOP 

:rem 5 
50 FORK=lT016:READH$:IFH$=IEND I THENPRINT"DONE":END :rem 149 
60 IFH$=I**"THEND=M:GOT080 :rem 14 
70 GOSUB90 : rem 80 
80 POKEPC+B,D:PC=PC+l:NEXT:GOT040 :rem 80 
90 D=0:FORI=lTOLEN(H$):J=ASC(MID$(H$,I,1»-48:D=16*D+J+(J>9)* 

7:NEXT:RETURN :rem 118 
100 DATA00,21,0E,49,0F,0D,2A,45,3F,06,36,44,3D,23,3A,10,41 

:rem 156 
110 DATA10,00,00,AD,07,03,C9,**,F0,13,8D,AD,**,A9,**,8D,07 

:rem 140 
120 DATA20,03,AD,06,03,8D,AC,**,A9,3A,8D,06,03,60,AD,AC,** 

:rem 202 
130 DATA30,8D,06,03,AD,AD,**,8D,07,03,60,10,6D,C9,FF,F0,69 

:rem 232 
140 DATA40,24,0F,30,65,38,E9,7F,AA,84,49,C9,lA,D0,04,A9,3F 

:rem 247 
150 DATA50,D0,53,8D,10,**,A0,FF,CA,F0,08,C8,B9,9E,C0,10,FA 

:rem 16 
160 DATA60,30,F5,8C,11,**,A0,08,AD,10,**,D9,07,**,F0,28,88 

:rem 129 
170 DATA70,10,F8,A2,00,A0,06,D9,00,**,F0,04,88,10,F8,24,E8 

:rem 159 
180 DATA80,AC,11,**,C8,B9,9E,C0,30,lC,20,47,CB,CA,10,F4,C8 

:rem 255 
190 DATA90,B9,9E,C0,49,80,D0,10,AC,11,**,C8,B9,9E,C0,30,05 

:rem 220 
200 DATAA0,20,47,CB,D0,F5,29,7F,A4,49,A2,00,4C,lA,C7,END 

:rem 201 

56 



fa~ I Multiprocessing 
This program will allow you to clone your unexpanded VIC into two lK 
VICs through software. You will be able to place two separate programs into 
memory and run them at the same time. The program lets you view them in
dividually or at the same time with a special split-screen display. 

I Multiprocessing 
Multiprocessing means having more than one running program (process) at 
the same time. Multiprocessing usually takes place on mainframe computers 
and minicomputers which support many users at the same time, or allow 
single users to run several programs in parallel. However, even an inexpen
sive microcomputer can support a multiprocessing environment. 

The VIC comes with two processes, the BASIC process you see and the 
IRQ process which handles the background routines involving the keyboard, 
clocks, and other system tasks. The two processes do not actually run at the 
same time; however, they switch back and forth so often that they appear to 
run in parallel. We'll use the IRQ process to help manage a third process on 
the VIC, which will look exactly like the normal BASIC process, but will be 
completely independent of it. 

In order to switch processes, we will SYS to the routine PROC which 
saves the state of the current process on the stack and in reserved blocks of 
memory. The PROC routine restores a different process from the one it was 
called by. The next time PROC is called, we pull the switch again and let the 
original process run, and so on. 

To initialize this system, we'll need to have separate memory to store 
the state of the process that is not running. This requires space to save the 
first three pages (one page equals 256 bytes) of memory. There is no need to 
save the fourth page of memory ($0300-$03FF) since it doesn't have any 
BASIC state information. We will need to save an extra screen memory (two 
pages) as well as extra color memory for the second BASIC. 

We need one page of memory for our program (some of the program we 
will place in page 3 which is not swapped in the current scheme). This 
leaves 2K of memory in the unexpanded VIC to split between the two BASIC 
processes. The memory for the process system lays out as follows: 

$9600-$97FF Color memory 
$9400-$95FF Alternate color memory 
$lEOO-$lFFF Screen memory 
$lCOO-$lDFF Alternate screen memory 
$1900-$1 BFF Storage for the first three pages of dormant process 
$lBOO-$lBFF The process and video control programs 
$1400-$17FF Memory for the second BASIC process 

57 



I Utilities 

$1000-$13FF Memory for the first BASIC process 
$OOOO-$03FF BASIC and Kernal storage (and process init program) 

With careful coding, the system just fits into the unexpanded VIC. By 
putting the alternate screen memory just below the normal screen memory, 
we can switch screens by inverting just one bit. This same bit will cause the 
color memory to switch for us to the location normally used to hold color 
memory when the VIC is expanded to 8K or more. The initialization part of 
the process mechanism resides in the tape buffer starting at $033C, and is 
used only once so the tape buffer can be used normally once processes are 
running. 

I Initialization and Process Switches 
To initialize the process system, we copy the first three pages of memory 
into our storage area, copy the screen characters and colors into the alternate 
screen, and set new BASIC pointers to reflect the locations of the two BA
SICs. We also need to initialize some of the video registers. Since we copy 
the state of one process to create the other, both BASIC processes start out as 
exact copies of each other, but take on their own environments as we pro
gram in them. 

Process switches are very simple. When we hand off process control, we 
swap the contents of the first three pages with what we have saved away. 
Process switches can be done from the keyboard by pressing the f1 key or 
from a BASIC program with a SYS6275. We also need to update some video 
information on the process switch if we are not running in split-screen mode. 

I Split Screens 
In order to watch both processes at the same time, there is a split-screen rou
tine which runs on the IRQ interrupt. This routine sets the video display to 
show only 11 rows at a time. During each IRQ interrupt it changes both the 
screen being displayed and the vertical origin of the screen. One screen starts 
at the top of the display and the other just below the center so that there is a 
single-row gap of border color in between. 

Normally, when switching screens like this, there is an instant when the 
screens overlap visually. To avoid this, we wait until the video raster (read
able due to the VIC's light pen capabilities) is at the top of the screen before 
we switch. Although there is only one screen being displayed at a time, they 
switch so quickly (about 60 times a second) that there appear to be two dis
plays, one above the other. 

In order to view or work on the processes separately, press the f3 key, 
which will switch to single-screen mode. Process switching with the f1 key 
will also switch to the screen of the process of interest when in single
display mode. Even though only one screen is being displayed, the other 

58 



Utilities 

process may still be running, updating its currently invisible screen. Split
screen mode can be turned on again by pressing f3 once more. The same fast 
switching technique which makes the split screen work can also make the 
processes appear to run simultaneously. 

The process control provided requires that one process let the other run, 
and vice versa, using the function key or SYS. This is an explicit handoff 
method of control. By having each process constantly handing off to the 
other, usually in a loop, they will appear to run at the same time, achieving 
our goal of parallel processing on the VIC. Two example programs which do 
this are included. 

I Starting Processes 
First, run Program 1, which contains the program in hexadecimal strings and 
POKEs it into memory. The program contains checksums to catch errors 
made when typing it in. It takes a little time, so be patient. When it is done, 
do a SYS828. You should now have a split screen. The next step is the most 
crucial. Clear the screen by pressing SHIFT -CLR/HOME several times. Next 
do a SYS6275, and press SHIFT -CLR/HOME again several times. Repeat this 
procedure until you are able to switch the cursor easily from window to win
dow by pressing the f1 key. 

You are now ready to start using your two BASIC processes, but first, a 
quick warning: Do not press RUN/STOP and RESTORE together. This will ter
minate the process system, possibly unrecoverably. 

To stop a process, simply use RUN/STOP alone. Also be careful when 
putting processes in infinite loops, since they may be difficult to halt. You 
can put programs into each BASIC through the normal means-keyboard, 
tape recorder, disk, or whatever. One of the windows of the split screen will 
disappear temporarily during tape or disk operations. 

The interrupt routine uses a simple test to see if the function keys are 
down, so they tend to bounce a bit. Quick, short taps are best. You should 
avoid programs that manipulate storage outside of BASIC or any BASIC 
pointers, as they will probably crash the program. Programs that are written 
completely in BASIC (no POKEs) are best. You will have only lK of memory 
in each BASIC, so your programs should be short. Look at the example pro
grams to see how to set up simple processes. 

I Example Programs 
Program 2 computes prime numbers, handing off to the process-switch rou
tine before it tests every number. Program 3 displays the VIC character set in 
large format on the screen, handing off control before each line of display. 
When testing to see if you have entered them correctly, make sure you put a 
REM before the SYS statements. 

59 



Utilities 

To run the programs, first set up processes as outlined above, load one 
of the programs, and type RUN. The program should hand off control fairly 
quickly, and the cursor should appear in the other window. Load the other 
program and type RUN. Now they both should be running. These processes 
are best viewed in single-screen mode, and you will be able to verify for 
yourself that the other process is still running when you are not watching it 
by seeing how far it has advanced between viewings. 

I Parallel Processing 
We have set up parallel processing on our little VIC in a manner similar to, 
although much simpler, the way larger computers do. If you examine the 
machine language program carefully, you will notice that the memory limita
tions are all that limits it to only one extra BASIC process. Therefore, a VIC 
with more memory could have even more BASIC processes, each running in 
turn. This would require special handling of the color memory, among other 
things, but it is within the VIC's capabilities. 

Program 1. Multiprocess 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

100 
110 
120 
130 
140 
150 
160 
170 

POKE52,24:POKE56,24:CLR 
FORQ=1000TOI140STEPI0 
C=0 
READADD$,MEM$,CSUM 
H$=ADD$:GOSUB900:ADD=D 
H$=LEFT$ (MEM$ , 2) : I FH$= '"' GOT0210 
MEH$=MID$(MEM$,3) 
GOSUB900 

:rem 58 
:rem 206 

:rem 67 
: rem 48 

:rem 2 
:rem 194 
:rem 136 
:rem 177 

180 POKEADD, D : rem 1 
190 ADD=ADD+l:C=C+D :rem 49 
200 GOT0150 : rem 97 
210 IFCSUM<>CTHENPRINT"ERROR IN LINE" ;Q:END : rem 253 
220 NEXT : rem 211 
230 PRINT"SYS( 828) TO START" :PRINT : rem 80 
240 PRINT"SYS(6275)/Fl TO S\vITCH" :rem 166 
250 PRINT"F3 SPLIT/FULL SCREEN" :rem 143 
260 POKE52,20:POKE56,20 :rem 30 
270 NEW :rem 131 
900 D=0:FORI=ITOLEN(H$):J=ASC(MID$(H$,I,I»-48:D=16*D+J+(J>9) 

*7:NEXT:RETURN :rem 166 
1000 DATA 033C,78A9188D1503A9008D1403BA8EC318A000B90000990019 

B9,2066 :rem 49 
1010 DATA 0354,000199001AB9000299001BB9001E99001CB9001F99001D 

B9,1526 :rem 0 
1020 DATA 036C,0096990094B9009799009588D0D3A9008D00148D01148D 

02,2279 :rem 20 

60 



Utilities I 
1030 DATA 0384,14A914853885348D2C198D2E198D30198D3219A9188D34 

19,1846 :rem 68 
1040 DATA 039C,8D3819A91C8D880285D2A99485F4A94B8DC418A9198DC5 

18,2896 :rem 186 
1050 DATA 03B4,A9808DC618A9168D03905860,1323 :rem 22 
1060 DATA 1800,2CC618101BA900CD0490D0FB~C0190ADC4188D01908CC4 

18,2646 :rem 125 
1070 DATA 1818,A9804D02908D0290A5C5C927D01B2CC6183010A9074D0F 

90,2386 :rem 88 
1080 DATA 1830,8D0F90A9804D02908D02902083184C8018C92FD03BA980 

4D,2411 :rem 75 
1090 DATA 1848,C6188DC6181009AEC518A016A91B101FA216A91CCD8802 

F0,2394 :rem 136 
1100 DATA 1860,02A2968E0290AD01908DC518A219A02EA9022D88020918 

8E,2204 :rem 59 
1110 DATA 1878,01908C03908D0F904CBFEA488A489848ADC318BA8EC318 

AA,2848 :rem 199 
1120 DATA 1890,9AA000BE0019B90000990~198A990000BE001AB9000199 

00,1738 : rem 0 
1130 DATA 18A8,lA8A990001BE001BB9000299001B8A99000288D0D668A8 

68,2129 :rem 65 
1140 DATA 18C0,AA6860,370 :rem 4 

Program 2. Example 1 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 P=1:F=2:M=6275 
2 P=P+F:J=3:SYSM 
3 IFJ*J>PTHENPRINTP:GOT02 
4 Q=PjJ:IFINT(Q)-QTHENJ=J+F:GOTOJ 
5 GOT02 

Program 3. Example 2 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 PRINTCHR$(147) 
15 M=32760:P=6275 
20 S$=CHR$(18):T$=CHR$(146) 
25 FORI=0T07:T%(7-I)~2iI:NEXT 
30 FORN=0T0511:M=M+8 
35 PRINTCHR$(19):PRINT:PRINT 
40 FORJ=MTOJ+7:SYSP 
45 X=PEEK(J) :Y$=" 
50 FORK=0T07 
55 IFXANDT%(K)THENY$=Y$+S$ 
60 Y$=Y$+" "+T$ 
65 NEXT:PRINTY$,Y$ 
70 NEXT:NEXT:GOT020 

:rem 118 
:rem 2')0 
: rem 191 
:rem ll8 
:rem 160 

:rem 220 
:rem 141 
:rem 173 

:rem 30 
:rem 179 

:rem 63 
:rem 247 
:rem 246 
:rem 222 

:rRm 65 
:rem 175 
:rem 151 
:rem 244 

61 



C, D, 
Lane 

Screen Print II and 
Big Screen Print 

"Screen Print" was a program that printed out, bit for bit, whatever was on 
the VIC screen, Since the original Screen Print program for the VIC, features 
and optimizations have been incrementally added which make the program 
both smarter and faster, As a bonus, the "Big Screen Print" variation of 
Screen Print prints the screen four times larger, 

For those unfamiliar with the original Screen Print program, it translated 
the VIC's 8 X 8 (or 16 X 8) characters into six-bit-high characters for the 
printer, picking up characters in each row of the screen where it left off, so 
no bits were missed, A line on the printer could be part of two adjacent lines 
on the screen, This allowed an exact reproduction of the screen, not possible 
with the printer's 6 X 7 bit character set. 

I Screen Print II 
Certain features which were missing from Screen Print have been incor
porated into "Screen Print II," This program is able to print full graphic 
screens without modification. The height and width of the screen are deter
mined by examining the VIC chip registers rather than being set by the user, 
The calculation of the number of rows now adjusts for double-height charac
ters, and the printout is horizontally centered on the page, Despite the added 
flexibility of Screen Print II, it is also slightly faster than the original. 

Screen Print II has several optimizations that improve its performance. 
The powers of two, used to test and set bits, are precomputed and stored in 
an array (make sure your graphic area is well protected from array space), 
Multiplication and division operations have been replaced with logical opera
tions for added speed, Though some gains have been made in speed, don't 
expect miracles-printing a normal VIC screen will take about 25 minutes, 

I Big Screen Print 
Big Screen Print is a modified version of Screen Print II that prints four dots 
to each screen pixel. The program has the extra complexity of mapping an 
even number of pixels onto odd-sized characters. This makes it twice as slow 
as regular Screen Print, though some may find the larger printouts worth the 
time, The larger format may also be more useful when printing screens with 
multicolor characters, 

To use either program, you can include it as a subroutine in your pro
gram, Since there are no GOTOs in the code, lines can be numbered any 
way you wish. A better approach, for most applications, is to link programs 
by having your program set up the screen, do a CLR, wait for you to start 

62 



Utilities I 
the tape recorder running, and then load the Screen Print program to start it. 
For example: 
100 WAIT 100,1:GET A$:CLR:LOAD "SCREEN PRINT" 

You should make sure the original program is larger than Screen Print to 
allow the program linking to work. 

Both programs work no matter how the VIC's screen is shaped, no mat
ter where it is located in memory. Before printing the screen, the programs 
find where the character set resides in memory, so the programs work with 
both ROM characters and user-definable RAM characters. They also work 
with mixed user and ROM characters, as well as adjust for double-height 
characters. Anything that can be PRINTed or POKEd onto the screen will be 
printable by Screen Print II and Big Screen Print. 

Program 1. Screen Print II 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 V=36866:U=127:H=(PEEK(V+1)AND126)j2:H=PEEK(V)ANDU:FORI=.To7 
:T%(7-I)=21I:NEXT :rem 237 

2 E$=CHR$(16)+~1ID$(STR$(40-INT(Hj2»,2,2) :N=PEEK(V+3)AND15:X= 
N=15 : rem 162 

3 T=128:S=4*(PEEK(V)ANDT)+64*(PEEK(V+3)AND112):Z=(PEEK(V+1)AN 
D1)*8+8:I=Z-1 :rp.m 247 

4 J=H*Z:K=W*8-1:F=2115:N=(NAND7)*1024-F*«NAND8)=.):OPEN4,4:P 
RINT#4,CHR$(8) :rem 73 

5 FORL=.TOJ-1STEP7:PRINT#4,E$~:FORC=.TOK:B=T%(CAND7):A=T:P=S+ 
Cj8 : rem 7 

6 FORR=LTOR+6:Y%=RjZ:D=PEEK(P+Y%*W):M=N:IFXTHENIFD>UTHENM=F:D 
=D-T : rem 16 

7 IFR<JTHENIFPEEK(D*Z+M+(RANDI»ANDBTHENA=A+T%(7+L-R) :rem 33 
8 NEXT:PRINT#4,CHR$(A)~ :NEXT:PRINT#4:NEXT:CLOSE4:END :rem 148 

Program 2. Big Screen Print 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 V=36866 :U=127 :H= (PEEK( V+1) k"J"D126) j 2 :\V=PEEK (V) ANOU: FORI = .T07 
:T%(7-I)=21I:NEXT :rew 237 

2 E$=CHR$ (16) +MID$ (STR$ (35-W) ,2,2) : N=PEEK( V+3) ANDI5 :X=N=15: F$ 
=CHR$(26)+CHR$(2) :rem 83 

3 T=128:S=4*(PEEK(V)ANDT)+64*(PEEK(V+3)ANDl12):Z=(PEEK(V+l)AN 
D1)*8+8:I=Z-1 :rem 247 

4 J=H*Z:K=W*8-1:F=2115:N=(NAND7)*1024-F*«NAND8)=.):OPEN4,4:P 
RINT#4,CHR$(8) :rem 73 

5 FORL=.TOJ-1STEP7:FORE=.T01:PRINT#4,E$; :G=L+E*3:FORC=.TOK:B= 
T%(CAND7):A=T :rem 148 

6 P=S+Cj8:FORR=GTOR+3:Y%=RjZ:D=PEEK(P+Y%*W):M=N:IFXTIIENIFD>UT 
HENM=F:D=D-T :rem 247 

7 IFPEEK(D*Z+M+(RANDI) )ANDBTHENY=R-G:Q=2*Y+E*(Y>.) :A=A+T%(7-Q 
)-(Y<>3-3*E)*T%(7-Q-1) :rem 48 

8 NEXT:PRINT#4,F$;CHR$(A);:NEXT:PRINT#4:NEXT:NEXT:CLOSE4:END 
:rem 178 

63 



pon~;~;;; I Tape Catalog 

Working with cassette tapes can be time-consuming. Not all of this time is 
spent waiting for the computer to load or save a desired program. Some time 
is spent positioning the cassette tape to the correct starting location. 

Two methods have been proposed to accomplish this positioning. The 
first method (recommended in the user manual) is to verify the preceding 
program and after receiving the VERIFY ERROR, save the program right be
hind the last one on tape. If your cassette recorder has a counter (and you 
remember to reset it at the beginning of the tape), the starting position and 
the program name can be recorded in a notebook. One problem with this 
method is that a program enlarged in a revision cannot be stored at the same 
starting position if there is a program behind it. An enlarged program will 
wipe out the trailing program. What usually happens is that another entry 
must be made to the notebook. 

Thanks to Harvey B. Herman's "Fast Find" (COMPUTE! magazine, July 
1982) the second method allows for expansion space between programs. This 
utility program is stored at the beginning of each storage tape. It contains a 
directory of the programs stored on the tape. This program instructs the user 
to operate the cassette recorder in order to fast forward to the starting po
sition where a program has been previously stored. 

There are two problems with this method. Saving the program requires 
running the utility program to position the tape. So an updated program 
must be saved on a second tape temporarily in order to load the utility pro
gram. The second problem is that the space between programs becomes 
larger as the tape reaches the end, due to the increase in the diameter of the 
take-up reel and the fixed amount of time for the fast forward (F.FWD) op
eration. If the gap was reduced, then less time would be required to position 
the tape. 

In order to solve both of these problems the Fast Find program was al
tered to specify the starting location of each program and to maintain a mini
mum gap between programs. To accomplish this the tape counter was 
calibrated with a means of relating program size to tape length. 

I Tape Calibration 
The current version of Fast Find uses a varying time delay with the cassette 
in the F.FWD mode to position the tape to the beginning of one of a number 
of programs stored on a tape. An equation for defining the time delay for the 
F.FWD loop in terms of the tape counter value was developed using the Fast 
Find program. This timing loop was modified to include an input variable 
which allows the F.FWD time to vary. The table shows the F.FWD time (T) 

64 



Utilities I 
and the associated tape counter value (C). Note at T=O, the value of C 
represents the length of the Fast Find program. 
F.FWD Time vs. Tape Counts 

T Jiffies C Counts 
o 6.0 

1000 57.9 
2000 122.5 
3000 206.1 
4000 310.1 
5000 452.1 

This data was then used to form the equation: 
T = 104 + 16.72*C - 0.01309*C*C 

In ordef' lo relate program size to tape length, a linear relationship be
tween them was defined: 
Cn = CO + CjS * Snj1000 

where Cn is the count for the nth program; 
CO is the count independent of file size; 
CIS is the counter change per kilobyte of program; 
Sn is the size of the nth program. 

Saving a short program (8 bytes) and a larger program (3574 bytes), the 
change in counter value was 3 and 20, respectively. Therefore, the linear 
constants are 
CO = 3 

CIS = (20-3)/(3574-8) = 4.76 

I Putting It All Together 
Now that the tape is calibrated, a specified file size can be used to define the 
EFWD time. Instead of entering the data (NAME and SIZE) as in the Fast 
Find program, it is more convenient to use the dynamic keyboard technique. 
This scheme stores data as part of the program. 

The program is structured around this dynamic keyboard technique. The 
data is stored in four arrays (C%, A$, SN, SM). C% contains the starting 
tape counter value for each program stored on the tape. A$ contains the pro
gram names. SN and SM contain the program's size in kilobytes. SN is the 
current value while SM is the maximum value. 

Each element in these arrays represents cataloged information of the 
programs as they are stored on the tape. However, the zero element is used 
for data destroyed by the dynamic keyboard. The value of C%(O) is the 
number of cataloged programs. SN(O) is the counter value for the next pro
gram to be stored, and SM(O) is the current size of "Tape Catalog." 

65 



I Utilities 

I Program Operation 
After the DATA statements are read, a menu appears that asks if you want 
to add to the directory or load a program. If you select A, you are prompted 
for data for the next program to be added (the catalog data must be entered 
in order). First, you are asked the filename. It must match the one on tape. 
Next, you are prompted for the program size (current and maximum) in units 
of bytes. The kilobyte equivalent is then shown in the format used later. If 
you accept the data, it is added to the program by the dynamic keyboard 
subroutine. If not, you are returned to the beginning menu. 

If you select B, the directory is displayed and you are asked to select a 
program number from a list assigned to each file as it was entered (same as 
Fast Find). An invalid number will send you back to the beginning menu. A 
valid number will display the time delay (in seconds) being implemented in 
the EFWD mode. The remaining program operation is the same as Fast Find. 

I Operational Notes 
The simplest method to calculate SN is to load the nth program and print the 
difference between the memory size minus FRE(O). For example, for the un
expanded VIC this would be 
PRINT 3583 - FRE(O) 

If the current memory size for the VIC is not known, this instruction will 
work: 
PRINT PEEK(45) - PEEK(43) + 256*(PEEK(46) - PEEK(44» 

Don't forget to save the Tape Catalog program each time after the direc
tory has been updated. A reminder has been added. If you make a mistake 
in a program name or current size (SN), the offending DATA statement can 
be found and changed at line 10001 and up. 

In order to account for inaccuracies in the tape calibration process, a pro
gram's maximum size (SM) should always be larger than the current size 
(SN). For the 60-minute tape used here, 210 bytes represent a tolerance of 
one tape count. 

If you want to start a new tape, just change the value of C%(O) in line 
10000 and save the program on the new tape. 

Tape Catalog 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 RESTORE:REM READ # OF PROGRAMS = C%(0) 
20 READJ:RESTORE:N=J+l 
25 REM TAPE CALIBRATION COEFFICIENTS 
26 A0=104:Al=16.72:A2=-.01309:C0=6 

66 

:rem 8 
:rem 145 

:rem 15 
:rem 244 



Utilities 

30 CO=3:CS=4.76:REM SIZE COEFFICIENTS 
40 DIMC%(N),A$(N),SN(N),SM(N) 

:rem 12 
:rem 76 
:rem 14 50 NC=22:NR=23:SB=36879:REM SCREEN 

60 FORI=0TOJ :rem 240 
:rem 63 

:rem 243 
:rem 17 

70 READC%(I),A$(I),SN(I),SM(I):NEXTI 
80 POKESB,254 
90 PRINT"{CLR} {BLU} {5 SPACES}TAPE CATALOG" 
95 PRINT" {2 OOWN}NUMBER OF PROGRAMS ON THIS TAPE II i J 

100 
110 
120 
130 
140 
145 
150 
160 
165 
170 

:rem 235 
PRINT"{3 DOWN} A) ENTER PROGRAM DATA":PRINT :rem 118 
PRINT" B) SELECT A PROGRAM" :rem 231 
PRINT"{3 DOWN}ENTER A OR B PLEASE" :rem 243 
GETK$:IFK$="A"THEN500 :rem 161 
IFK$<>"B"THEN130 :rem 86 
REM LIST DIRECTORY :rem III 
POKESB,8 :rem 190 
FORK=0TOJSTEP5 :rem 148 
REM PRINT HEADER :rem 182 
PRINT" {CLR} {CYN}***PROGRAM*** SIZE-(K) {YEL}NO. {WHT}***NAM 
E*** {GRN}NOW {RED}/MAX" :rem 129 

175 REM PRINT DATA : rem 40 
180 GOSUB400 :rem 173 
190 NEXTK : rem 36 
200 PRINT"SAVE NEXT PROGRAM{5 SPACES}AT COUNTER NUMBER "SN(0) 

:rem 137 
210 INPUT" {YEL} PROGRAM NO. (OR 0)":K :rem 144 
220 IFK<l OR K>J THEN80 :rem 230 
230 IF(PEEK(37151)AND64)=0THENPRINT"PRESS STOP ON CASSETTE" 

:rem 98 
240 IF(PEEK(37151)AND64)=0THEN240 :rem 92 
250 PRINT"PRESS FAST FORWARD":PRINT"PLEASE" :rem 253 
260 IF(PEEK(37151)AND64)=64THEN260 :rem 154 
270 PRINT "THANK YOU": PRINT : rem 164 
300 A=TI:REM SAVE TIME :rem 42 
301 REM D=COUNTER OFFSET :rem 224 
302 D=SM(0)-C0:T0=A0+Al*D+A2*Dt2 :rem 234 
305 REM C=COUNTER :rem 28 
310 C=C%(K):Tl=A0+Al*C+A2*Ct2 :rem 42 
315 REM DT=DELAY TIME :rem 240 
320 DT=TI-T0:S=INT(DT/60) :rem 211 
330 PRINT"WAIT "S: "SECONDS" : rem 125 
335 PRINT"{HOME}"::FORI=lTONR:PRINT"{DO~m}"::NEXT :rem 165 
340 IFTI-A <DTTHEN340 :rem 203 
350 POKE37148,PEEK(37148)AND247 :rem 231 
360 PRINT"PRESS STOP PLEASE" : rem 247 
370 IF(PEEK(37151)AND64)=0 THEN370 :rem 100 
380 PRINT"{CLR}{3 OOWN}LOAD ":CHR$(34):A$(K):CHR$(34):CHR$(19 

) :rem 109 
390 POKE198,1:POKE631,13:END :rem 110 
400 FORL=lT05 :rem 13 

67 



I Utilities 

405 REM FIVE/SREEN :rem 83 
410 I=L+K:IFI>JTHEN480 :rem 66 
420 I$=MID$(STR$(I),2,2):PRINT"{YEL}"I$+" "; :IFI<10THENPRINT" 

"; : rem 172 
425 REM FORMAT XX.X :rem 126 
430 A=SN( I) :GOSUB700 :SN$=K$ : rem 76 
440 A=SM(I):GOSUB700:SM$=K$ :rem 75 
450 PRINT" {HHT} "A$ (I) ;TAB (13);" {GRN} "SN$;" (RED} "SM$;" {PUR }CO 

UNTER ="C%(I):PRINT :rem 55 
460 NEXTL : rem 37 
465 PRINT"HIT SPACE BAR FOR MORE" : rem 176 
470 GETK$:IFK$=""THEN470 :rem 109 
480 RETURN :rem 124 
490 REM INPUT DATA :rem 43 
500 L=N+10000:POKESB,120 :rem 69 
510 PRINT"{CLRJ[3 SPACES}PROGRAM NO.";N:PRINT :rem 45 
520 INPUT"NAME";A$(N) :rem 203 
530 PRINT"INPUT SIZE DATA{7 SPACES} (IN BYTES)" :rem 189 
540 INPUT" {DOWN} NOW"; A:PRINT "NOH ="; : GOSUB7 50: SN( N )=A 

:rem 179 
550 SN$=STR$(A) :rem 75 
560 INPUT"{OOWN} MAX";A:PRINT"MAX =";:GOSUB750:SM(N)=A 

PRINT"IS INPUT OK(Y/N)?" 
GETK$:IFK$=""THEN580 
IFK$="N"THEN80 
SM$=STR$(A) 
REM MAX SIZE OF TAPE CATALOG IS 25 
IF N=1 THEN SN(0)=25 
C$=STR$(SN(0» 
GOSUB650 
GOT0670:REM DONE 

:rem 152 
:rem 153 
:rem 113 

: rem 2 
:rem 70 
:rem 93 

:rem 215 
:rem 204 
:rem 180 
:rem 180 

570 
580 
590 
600 
605 
610 
620 
630 
640 
645 
650 

REM SETUP DYNAMIC KEYBOARD :rem 106 
O$=MID$(STR$(L),2,5)+"DATA"+C$+","+A$(N)+","+SN$+","+SM$ 

: rem 13 
655 REM DO IT NOW 
660 RL=670:GOT0900 
670 PRINT"{CLRJ[BLK}DON'T FORGET TO REWIND 

REVISED {DOWN} {4 SPACES}PROGRAM" 
680 IFPEEK(197)=64THEN680 
690 GOT010 
700 REM FORMAT XX.X 
7113 K$=STR$ (A) 
720 IFVAL(K$)=INT(VAL(K$»THENK$=K$+".0" 
730 IFLEN(K$)=3THENK$=" "+K$ 
740 RETURN 
745 REM BYTE > KILOBYTE 
750 A=A/1000 
760 A%=INT«A-INT(A)+.05)*10) 
770 A=INT(A)+A%/10 
780 PRINTA 

68 

:rem 168 
:rem 32 

{DOWN}AND SAVE THE 
:rem 79 

:rem 184 
:rem 57 

:rem 122 
:rem 243 
:rem 254 
:rem 241 
:rem 123 

:rem 89 
:rem 75 

:rem 1 
:rem 186 
:rem 109 



790 
900 
910 
920 
930 
935 
940 
945 
950 

960 

Utilities I 
RETURN :rem 128 
REM DYNAMIC KEYBOARD SUBROUTINE :rem 227 
PRINT"{CLR}{2 OOWN}{YEL}": :rem 248 
REM INVISIBLE SCREEN :rem 228 
C%(0)=N :rem 16 
REM NEXT STORING LOCATION SN(0) :rem 101 
SN(0)=SN(0)+INT(CO +CS*SM(N» :rem 65 
REM CURRENT SIZE OF TAPE CATALOG :rem 158 
U=(256*(PEEK(46)-PEEK(44»+PEEK(45)-PEEK(43»!1000*CS + C 
o : rem 5 
PRINT" 10000DATA"C%(0) i" , DIRECTORY," i SN( 0)"," iU :PRINTO$ 

970 PRINT"GOTO" i RL:PRINT" {HOME}" 
980 POKE198,9 

:rem 135 
:rem 161 
:rem 215 
:rem 154 
:rem 130 
:rem 118 

990 FORI=0T08:POKE631+I,13:NEXT 
999 END 
10000 DATA 2 ,DIRECTORY, 65 , 16.74212 
10001 DATA 25,COPY, 2.7, 3.6 
10002 DATA 45,COPY2, 2.7, 3.6 

: rem 96 
:rem 149 

69 



Gregory I 
Sommerville Microassembler 

Try typing in a BASIC arcade-type game program on your VIC. How fast is 
it? Not very. There's only one solution for higher speed. Machine language. 

Machine language is a powerful tool for computer programmers. It's 
faster than BASIC, and it allows you to access routines and locations you 
could not otherwise reach. If you've programmed only in BASIC, machine 
language can be hard to learn. A BASIC programmer will come upon hexa
decimal numbers, offsets, and numerous addressing modes. 

"Microassembler" was written to solve as many of these problems as 
possible. It requires a VIC with at least SK memory expansion. 

I Assembler Mode 
Microassembler uses a unique syntax for its assemble section. Here are the 
basic guidelines: 

1. Single-byte instructions, like CLC or SED, can be typed as normal. 
2. Zero page instructions have a Z following their root form, like ORAZ, 

ANDZ, DECZ, and so on. 
3. Indexed instructions always have their index at the end, like ANDZX, 

DECX, LDXY, and so on. 
4. Immediate instructions always have the symbol # at the end, for ex

ample, LDX#, CMP#, and AND#. 
5. For simple absolute instructions, just use the normal form, like LDA, 

STX, CMP, and LSR. 
6. For indirect indexing, such as ORA (addr),X use ORA(X. Always put the 

index at the end. 
7. For an indirect jump, use JMP( ) addr. 
S. For accumulator addressing, just add an A to the end of the code, for 

example, LSRA and ASLA. 
9. The operation is always assumed to be the first five characters of the in

put string, with the operand comprising the remainder. Use enough 
spaces so that your operand will start at the sixth character or greater. All 
operation codes are from three to five characters in length. 

10. Hitting RETURN while assembling simply separates the program listing 
on the screen. It does not affect the program. 

11. To exit the Assemble mode, type DONE and press RETURN. 
12. All numbers are base ten while assembling. 
13. Branching instructions use the address you wish to jump to. 

The program uses a decimal format simply because I feel that decimal is 
easier to use than hex. For example, I find it much simpler to type 175 than AF. 

The rules above apply only to the Assemble mode. There are five other 
modes in the program. 

70 



Utilities 

I Disassemble Mode 
Typing D while in the command phase will select the Disassemble mode. An 
initial address will be asked for, and the program will disassemble starting 
there. If a location does not hold an instruction, an X will be printed. 
Branches are calculated using a routine at line 10000. It's always wise to 
check a program after assembling it to check for typing errors. The program 
will disassemble ten instructions and then wait for any key to be pressed ex
cept E. Typing E for Exit will exit to the command phase. 

I Hex Val/Loc. 
The Hex Values of Locations mode is for those programmers who refuse to 
abandon hex numbers. This mode allows you to enter a series of hexadecimal 
digits into memory. It's also good for converting hex addresses to decimal. To 
enter data, simply type in your starting hex address, and then type in your 
data and press RETURN. The program will show you the contents of each 
location before you change it. Hitting RETURN alone will leave the contents 
as they are and go on to the next location. Type X followed by RETURN to 
exit this mode. 

I LOAD/SAVE RAM 
Typing L for LOAD RAM will load RAM into the memory area it was saved 
from. Tape users should change the 8 in lines 620 and 740 to 1. If you wish 
a relocated LOAD, change the 1 in line 620 to O. This will load the data into 
the start of memory, destroying Microassembler unless vital pointers are 
changed. 

Typing S for SAVE RAM will save a program from any section of mem
ory of any length. Simply type in the name, the starting memory, and the 
ending memory location. 

I Decimal Val/Loc. 
The V mode, or Decimal Values of Locations mode, does exactly the same 
thing as the H mode, or Hex Values mode, except it works in decimal. 

I Learning 6502 Machine Language 
Aside from this program, I would also advise you to look at some books 
about 6502 machine language. Get a copy of the VIC-20 Programmer's Ref
erence Guide. Starting on page 107, it has a section for machine language 
programmers that's really helpful. 

Some other books you might find helpful are 6502 Assembly Language 
Programming by Lance Levanthal, Machine Language for Beginners by Richard 

71 



I Utilities 

Mansfield, and Programming the 6502 by Rodnay Zaks. Also, comprehensive 
memory guides are almost necessities once you get into serious machine lan
guage programming. COMPUTEt's Mapping the VIC by Russ Davies is a com
plete memory map for the VIC, and COMPUTEt's VIC-20 and Commodore 64 
Tool Kit, both the BASIC and Kernal volumes, by Dan Heeb can be very use
ful if you want to look more closely at ROM routines. 

I Locating Your Programs 
The Microassembler takes up memory from 4608 to 9728, leaving 6655 bytes 
free for your programs. The top of memory for an expanded VIC with one 
8K expander is 16383. 

I Some Examples 
Since the syntax for Microassembler is so different from that of other assem
blers, I have included some short routines in standard and Microassembler 
format for comparison. 

First, we'll write the program in standard 6502 assembly language, start
ing at location 16000, and then we'll see the program in the Microassembler 
version. 

3E80: LOX #$00 
3E82: STX $A2 

AA 3E84: CMP $A2 
3E86: BNE AA 
3E88: RTS 

And now, the Microassembler version: 
16000:LOX# 0 
16002:STXZ 162 
16004:CMPZ 162 
16006:BNE 16004 
16008:RTS 

This program simply clears location 162 and then waits for it to equal 
the value of the accumulator. The machine will automatically increment loca
tion 162 by one every 1/60 second. 

The Microassembler program is very close to the standard form in this 
particular case. Let's try another, and this one will be longer and more com
plex. Let's use the Kernal CHROUT subroutine. The CHROUT subroutine 
sends a single character to the output device, which is usually the screen. In 
other words, it can be used to print an ASCII character on the screen. 

We'll use the subroutine to print out a string up to 255 characters long, 
starting at a location pointed to by the X and Y registers. The length of the 
string will be in the accumulator. Once again, the routine will start at loca
tion 16000 decimal. First, we'll write the standard version: 

72 



Utilities 

3E80: STA $3E7F 
A 3E83: STX B+01 

3E86: STY B+02 
B 3E89: LOA $0000 

3E8C: JSR $FFD2 
3E8F: DEC $3E7F 
3E92: BEQ C 
3E94: INX 
3E95: BNE A 
3E97: INY 
3E98: JMP A 

C 3E9B: RTS 

Now, we'll see the Microassembler version: 
16000:STA 15999 
16003:STX 16010 
16006:STY 16011 
16009:LDA 0 
16012:JSR 65490 
16015:DEC 15999 
16018:BEQ 16027 
16020:INX 
16021:BNE 16003 
16023:INY 
16024:JMP 16003 
16027:RTS 

The location of the string is calculated as 256*Y + X. This is standard 
high byte/low byte form in 6502 machine language. The length is stored at 
15999 because we need the accumulator free for the CHROUT routine at 
65490, which prints the ASCII of the accumulator to the output device, 
which in this case is the screen. 

The X and Y registers are stored into the locations used in the LDA 
instruction. This cuts down on the length of the routine and makes it faster 
and more efficient. After loading and printing, the program decrements the 
stored length and ends if it is equal to zero-that is, if all the characters have 
been printed. If the length is not zero, the program adjusts the X and Y reg
isters, which point to the character to be printed, and jumps back to the start 
again, storing the address and printing as before. 

Microassembler 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

5 POKE36879,154 :rem 59 
6 POKE650,255 :rem 200 
10 PRINT"{CLR}{BLU}{RVS}{3 SPACES}MICRO ASSEMBLER{4 SPACES}" 

:rem 14 

73 



I Utilities 

20 PRINT"{3 DOWN} {RVS}COMMANDS:{DOWN}" :rem 21 
21 PRINT" A - ASSEMBLE" :rem 238 
22 PRINT" D - DI SASSEMBLE" : rem 210 
23 PRINT" H - HEX VAL/LOC." :rem 174 
24 PRINT" L - LOAD RAM" :rem 176 
25 PRINT" S - SAVE RAM" : rem 199 
26 PRINT" V - DEC VAL/LOC." :rem 166 
27 PRINT" X - EXIT" : rem 249 
28 POKE52,38:POKE56,38 :rem 2 
30 A$="0123456789ABCDEF" :rem 235 
40 PRINT"{DOWN}C: (LEFT}"7: :rem 213 
41 GETB$ :IFB$=" "THEN41 : rem 239 
42 PRINTB$ :rem 89 
50 IFB$="A"THEN300 :rem 222 
60 IFB$="D"THEN450 :rem 232 
70 IFB$="H"THEN200 :rem 230 
75 IFB$="L"THEN600 :rem 243 
77 IFB$="S"THEN700 :rem 253 
80 IFB$="V"THEN100 :rem 244 
90 IFB$="X"THENPRINT"{CLR}":END :rem 219 
93 IFB$=CHR$(13)ORB$=CHR$(17)THENPRINT" {UP}"; :rem 30 
94 IFB$=CHR$ (145) THENPRINT "{DOWN}"; : rem 215 
95 PRINT" {3 UP}" :GOT040 : rem 201 
100 PRINT" {CLR}{ RVS}{ 4 SPACES} DEC I MAL VALUES {4 SPACES}" 

:rem 198 
140 INPUT"{2 DOWN} START LOC.";L:IFL<00RL>65535THEN140:rem 36 
150 PRINTL7" --" ; : rem 131 
160 PRINTPEEK(L);"--"; :rem 250 
165 HX$="" :rem 225 
170 INPUTHX$: IFHX$="X"THENCLR:GOTOI0 : rem 54 
175 IFHX$<>""THENPOKEL,VAL(HX$) :rem 124 
180 L=L+1:IFL>65535THENI40 :rem 233 
190 GOT0150 :rem 105 
200 PRINT"{CLR}{RVS}{6 SPACES}HEX{2 SPACES}VALUES{5 SPACES}" 

205 T=0 
210 INPUT"{3 DOWN} START LOC.";L$ 
220 HX$=LEFT$(L$,2):GOSUBI000 
230 T=VAL(HX$)*256 
240 HX$=RIGHT$(L$,2) :GOSUB1000 
250 T=T+VAL (HX$ ) 
260 IFT<=65535THENPRINTT; "--"; :GOT0270 
265 GOT0205 
270 G=PEEK(T):HX$=STR$(G):GOSUB2000 
280 PRINTHX$;"--"; 
285 HX$="" 
287 INPUTHX$: I FHX$=""THENT=T+l :GOT0260 
288 IFHX$="X"THENCLR:GOT010 
290 GOSUB1000:POKET,VAL(HX$):T=T+1 
295 GOT0260 
300 PRINT"{CLR}{RVS}{7 SPACES}ASSEMBLE{7 SPACES}" 

74 

:rem 189 
: rem 88 

:rem 223 
:rem 126 
:rem 229 
:rem 211 
:rem 159 
:rem 44 

:rem 109 
:rem 83 

:rem 255 
:rem 228 
:rem 126 
:rem 178 

:rem 56 
:rem 113 

:rem 85 



Utilities 

310 INPUT" {3 OOWN} START LOC."; L : rem 188 
320 PRINT"{3 OOHN}" :rem 153 
330 PRINT"{LEFI'}"L":"; :GOSUB2100:IFU$="DONE"THENHl :rem 255 
333 IFU$=""THEN330 :rem 231 
335 IFLEN(U$)<6THENU$=U$+" ":GOT0335 :rem 32 
340 CD$=LEFT$(U$,5):N$=RIGHT$(U$,LEN(U$)-5) :rem 133 
347 RESTORE :rem 194 
350 FORG=0T0255 :rem 114 
360 READNM$ : rem 116 
361 IFNM$="X"THEN370 :rem 138 
362 IFLEN(NM$)<6THENNM$=NM$+" ":GOT0362 :rem 242 
365 IFCD$=RIGHT$(NM$,5)THEN380 :rem 242 
370 NEXT:FORTH=1T0500:POKE36878,15:POKE36876,248:NEXT:POKE368 

78,0:POKE36876,0:GOT0330 :rem 178 
380 POKEL,G:IFLEFT$(NM$,1)="1"THENL=L+l:GOT0330 :rem 41 
385 IFLEFT$(CD$,1)="B"THEN11000 :rem 187 
390 IFLEFT$(NM$,1)="3"THEN410 :rem 95 
400 POKEL+1,VAL(N$):L=L+2:GOT0330 :rem 178 
410 F1=VAL(N$) :F2=INT(Flj256) :F3=F1-F2*2S6 :rem 48 
420 POKEL+1 ,F3 :POKEL+2 ,F2 : rem 200 
430 L=L+3:GOT0330 :rem 211 
450 PRINT"{CLR}{RVS}{5 SPACES}DISASSEMBLE{6 SPACES}" :rem 59 
460 INPUT" {3 OOWN} START LOC."; L : rem 194 
470 PRINTL;"-"; :rem 91 
480 RESTORE:FORG=0TOPEEK(L) :rem 250 
490 READNM$:NEXT :rem 241 
500 PRINT" {RVS}"; MID$ (NM$, 2); : E=VAL( LEFT$ (NM$, 1) ) : rem 6 
503 IF MID$(NM$,2,1)="B"THEN9000 :rem 171 
505 IFNM$="X"THENPRINT"X" :L=L+1 :E=0 :GOT0540 : rem 124 
510 IFE=1THENPRINT:GOT0540 :rem 160 
520 IFE=2THENPRINTPEEK(L+1) :GOT0540 :rem 192 
530 T1=PEEK(L+1):T2=PEEK(L+2) :PRINT256*T2+T1 :rem 88 
540 GV=GV+1:IFGVj10=INT(GV/10)THEN560 :rem 210 
550 L=L+E:GOT0470 :rem 237 
560 GETZ$:IFZ$=""THEN560 :rem 139 
565 IFZ$="E"THEN10 :rem 3 
567 PRINT:L=L+E :rem 174 
570 GOT0470 :rem 112 
600 PRINT"{CLR}{RVS}{7 SPACES}LOAD RAM{7 SPACES}" :rem 12 
610 INPUT"{3 OOWN}PROGRAM NAME";PN$ :rem 212 
620 LOADPN$,8,1 :rem 59 
700 PRINT"{CLR}{RVS}{7 SPACES}SAVE RAM{7 SPACES}" :rem 28 
705 INPUT"{3 OOWN}PROGRAM NAME";PN$ :rem 217 
710 NL=LEN(PN$) :rem 97 
715 INPUT"{2 OOWN}START MEM";SM :rem 219 
720 INPUT" {2 DOHN} END MEM"; EM: EM=EM+ 1 : rem 9 
725 IFSM>EMOREM<00REM>655350RSM<00RSM>65534THEN705 :rem 179 
730 S1=INT(SMj256) :S2=SM-S1*256:POKE172,S2:POKE173,Sl:rem 127 
735 POKE193,S2:POKE194,S1:El=INT(EMj256):E2=EM-El*256 :rem 68 
740 POKE174,E2:POKE175,E1:POKE186,8:POKE183,LEN(PN$) :rem 64 
745 FORJ=lTOLEN(PN$):POKE819+J,ASC(MID$(PN$,J,1» :NEXT :rem 5 

75 



Utilities 

750 POKEI87,52:POKEI88,3:POKEI85,1 :rem 203 
760 INPUT"{2 OOWN}{RVS}HIT RETURN TO SAVE";P$ :rem 235 
775 SYS63109:CLR:RUN :rem 239 
999 END :rem 130 
1000 TM=0:FORJ=IT02 :rem 125 
1010 FORI=0TOI5 : rem 104 
1020 IFMID$(A$,I+I,I)=MID$(HX$,J,I)THENTM=TM+I*16t(2-J) 

1030 
2000 
2010 
2020 
2030 
2100 
2200 
2212 

2214 
2215 
2217 
2220 
2225 
2230 
3000 

3010 

NEXTI,J:HX$=STR$(TM):RETURN 
HX=VAL(HX$):Dl=HXAND240 
D2=HXANDI5:Dl=Dl/16 
HX$=MID$(A$,Dl+l,I)+MID$(A$,D2+1,1) 
RETURN 

:rem 98 
:rem 38 

:rem 140 
:rem 70 
:rem 13 

:rem 165 
U$="":US$="" :rem 68 
U$="" :GETU$: IFU$=""THEN2200 : rem 7 
POKE36878,15:POKE36876,242:FORG1=IT035:NEXT:POKE36878,0 

:rem 51 
IFU$=CHR$(13)THEN2230 :rem 186 
PRINT"{RVS}";U$; :rem 156 
IFU$=CHR$(20)THENUS$=LEFT$(US$,LEN(US$)-I) :U$="" :rem 35 
US$=US$+U$ :rem 63 
GOT02200 :rem 200 
U$=US$:PRINT:RETURN :rem 42 
REM*** DATA FOR{3 SPACES}ASSEMBLING/DISASSEM-{2 SPACES}B 
LING :rem 44 
DATAIBRK,20RA(X,X,X,X,20RAZ,2ASLZ,X,1PHP,20RA#,IASLA 

:rem 22 
3020 DATAX,X,30RA,3ASL,X,2BPL,20RA(Y,X,X,X,20RAZX :rem 58 
3030 DATA2ASLZX,X,1CLC,30RAY,X,X,X,30RAX,3ASLX,X :rem 49 
3040 DATA3JSR,2AND(X,X,X,2BITZ,2ANDZ,2ROLZ,X,IPLP,2AND#,IROLA 

,X :rem 179 
3050 DATA3BIT,3AND,3ROL,X,2BMI,2AND(Y,X,X,X :rem 106 
3060 DATA2ANDZX,2ROLZX,X,1SEC,3ANDY,X,X,X,3ANDX,3ROLX,X 

:rem 28 
3070 DATAIRTI,2EOR(X,X,X,X,2EORZ,2LSRZ,X,1PHA,2EOR#,ILSRA,X 

:rem 207 
3080 DATA3JMP,3EOR,3LSR,X,2BVC,2EOR(Y,X,X,X,2EORZX,2LSRZX,X 

:rem 29 
3090 DATA1CLI,3EORY,X,X,X,3EORX,3LSRX,X,IRTS,2ADC(X,X,X,X 

:rem 106 
3100 DATA2ADCZ, 2 RORZ ,X, IPLA, 2ADC#, 1 RORA,X, 3JMP ( ) , 3ADC, 3 ROR, X 

:rem 141 
3110 DATA2BVS,2ADC(y,X,X,X,2ADCZX,2RORZX,X,ISEI,3ADCY,X,X,X 

:rem 216 
3120 DATA3ADCX,3RORX,X,X :rem 229 
3130 DATA2STA(X,X,X,2STYZ,2STAZ,2STXZ,X,IDEY,X,1TXA,X:rem 167 
3140 DATA3STY,3STA,3STX,X,2BCC,2STA(Y,X,X,2STYZX,2STAZX,2STXZ 

Y,X :rem 207 
3150 DATAITYA,3STAY,ITXS,X,X,3STAX,X,X,2LDY#,2LDA(X,2LDX#,X 

:rem 179 
3160 DATA2LDYZ,2LDAZ,2LDXZ,X,ITAY,2LDA#,ITAX,X :rem 113 

76 



Utilities 

3170 DATA3LDY,3LDA,3LDX,X,2BCS,2LDA(Y,X,X,2LDYZX,2LDAZX,2LDXZ 
Y,X :rem 65 

3180 DATAICLV,3LDAY,lTSX,X,3LDYX,3LDAX,3LDXY,X :rem 177 
3190 DATA2CPY#,2CMP(X,X,X,2CPYZ,2CMPZ,2DECZ,X,lINY,2CMP#,lDEX 

,x :rem 162 
3200 DATA3CPY,3CMP,3DEC,X,2BNE,2CMP(Y,X,X,X,2CMPZX,2DECZX,X 

:rem 186 
3205 DATAICLD,3CMPY,X,X,X :rem 12 
3210 DATA3CMPX,3DECX,X,2CPX#,2SBC(X,X,X,2CPXZ,2SBCZ,2INCZ,X,1 

INX,2SBC#,lNOP,X :rem 56 
3220 DATA3CPX,3SBC,3INC,X,2BEQ,2SBC(Y,X,X,X,2SBCZX,2INCZX,X,1 

SED,3SBCY,X,X,X :rem 23 
3230 DATA3SBCX,3INCX,X :rem 90 
9000 IFMID$(NM$,2,3)="BRK"ORMID$(NM$,2,3)="BIT"THEN505:rem 24 
10000 E=PEEK(L+l):IFE=<127THENGG=L+E+2:GOT010010 :rem 42 
10005 GG=L-254+E :rem 69 
10010 PRINTGG:E=2:GOT0540 :rem 7 
11000 IFLEFT$(CD$,3)="BIT"ORLEFT$(CD$,3)="BRK"THEN390 :rem 1 
11010 GG=VAL(N$):IFGG>LTHENGA=GG-L-2:GOT012000 :rem 5 
11020 GA=254-L+GG :rem 134 
12000 POKEL+l,GA :rem 126 
12010 L=L+2:GOT0330 :rem 47 

77 



Royon 
Webb 

Special Characters in 
the Expanded VIC 

Generating and using custom character sets on the VIC is fun. Unfortunately, 
their use seems to be restricted to the unexpanded machine. This is because 
the VIC chip cannot "see" beyond memory location 7680, the top of un
expanded memory. This greatly limits the length of BASIC programs. 

If you have added 8K or more of memory, you can still POKE the 
character set by using POKE 36869,207 instead of 36869,255. To return to 
the original set, use 192 instead of 240. Unfortunately, this results in less 
memory for BASIC than not using the expansion memory. 

I have written a short program that allows character sets (yes, you can 
program more than one) and still uses all memory after screen memory. The 
trick is to move the screen memory to a location above the character set. 
Then, the start of BASIC has to be set to the end of screen memory. Using 
Jim Butterfield's alternate screen program, I set the screen to memory loca
tion 4608. I then changed the start-of-BASIC pointers to memory location 
5120 and POKEd 5120 with O. Once these moves were made, I could use the 
memory from 4096 through 4607 for the character set, and then POKE 
36869,204 to use the characters I had made. 

After running this program to initialize the VIC, you can load any pro
gram, but remember that the screen now starts at 4608. The color memory 
stays at 38400, and your character set starts at 4096. 

I Using the Program 
First, type in and save Program 1 before running, or it will self-destruct even 
if typed in correctly! Now run it. The program will tell you if your DATA 
statements are correct. When it runs correctly, you will have a screenful of 
garbage. Simply hit RUN/STOP-RESTORE. The VIC is now initialized. Use 
the program as the first portion of a double load to allow the use of special 
characters with any length BASIC program. 

As for using multiple character sets, the screen and BASIC may be 
moved up again to allow as many as four character sets. To change the 
BASIC loader to allow this, you must change two of the numbers in line 60, 
three in line 65, and the checksum in line 20. The numbers to be changed in 
line 60 are the second and the last. The ones in line 65 are the third, sixth, 
and last (the number 20 in each case.) Use the following table to decide what 
number you wish . 

• 
78 



For 
2 sets 
3 sets 
4 sets 

Change to 
22 
26 
30 

Checksum 
2465 
2485 
2505 

POKE 36869 to 
205 
206 
207 

Utilities 

The second set will start at 5120, the third at 6144, and the fourth at 7168. 
BASIC will start 512 bytes above the highest character set. 

There is a small penalty if you use more than two character sets. Sets 3 
and 4 each have a block of 512 bytes below them that can't be used by 
BASIC or the character sets. However, you can use these areas for two more 
screens or for machine language subroutines (perhaps a joystick routine). 
There is also a bonus: Using reverse video to print a character will cause the 
equivalent character from the next higher set to appear. For example, if the A 
in set 1 is changed to a smiling face, and the A in set 2 to a frowning face, 
when set 1 is in use, typing A will print a smiling face, and a reverse A will 
print a frowning face. 

Program 2 will show you a familiar face. After running it, call up your 
free bytes and gloat over the amount of memory you have left. 

Program 1. Characters 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 REM BASIC LOADER FOR 8K GRAPHICS : rem 233 
5 PRINT" {CLR}" : rem 153 
10 D=0:FORX=5500T05531:READA:POKEX,A:D=D+A:NEXT :rem 172 
20 IFD<>2455THENPRINT"ERROR IN DATA":END :rem 203 
30 C=0:FORX=5200T05235:READA:POKEX,A:C=C+A:NEXT :rem 169 
40 IFC<>5288THENPRINT"ERROR IN DATA":END :rem 211 
50 SYS5500 :rem 46 
60 DATA169,20,133,44,133,46,133,48,133,50,141,130,2,169,1,141 

,129,2,169,0,141,0,20 :rem 210 
65 DATA141,1,20,141,2,20,76,80,20 :rem III 
70 DATA169,150,141,2,144,169,18,141,136,2,l62,0,169,146,232,1 

57,216,224,12,208 :rem 45 
80 DATA250,169,147,232,157,216,224,24,208,250,169,147,32,210, 

255,0 :rem 229 

Program 2. Special Effects 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 GO TO 10 :rem 203 
4 PRINT" {CLR}" ~ : POKE36869, 204 : FORY=l T07 :FORX=l T07 : PRINTA$ ~" 

{2 UP}"~:NEXTX:PRINT"{RIGHT}{2 DOWN}";:NEXT :rem 104 
5 GETB$:IFB$=""THEN5 :rem 143 
6 POKE36869,192:PRINT"{CLR}BYE, BYE NOW. ":END :rem 250 
10 FORX=4096T04607:POKEX,PEEK(X+28672):NEXT :rem 140 

79 



I Utilities 

20 FORX=4136T04143:READA:POKEX,A:NEXT:FORX=4200T04223:READA:P 
OKEX,A:NEXT :rem 129 

25 FORX=4240T04247:READA:POKEX,A:NEXT :rem 95 
30 FORX=4256T04263:READA:POKEX,A:NEXT:FORX=4280T04287:READA:P 

OKEX,A:NEXT :rem 154 
40 FORX=4296T04303:READA:POKEX,A:NEXT:FORX=4352T04359:READA:P 

OKEX,A:NEXT :rem 154 
50 DATA193,0,0,0,0,36,36,0,36,16,8,4,4,4,4,2,2,1,1,0,0,0,0,0, 

66,60,0,129,126,0,0,0 :rem 135 
60 DATA0,129,66,60,0,0,195,102,0,7,8,16,32,32,33,35,64,128,12 

8,0,0,0,0,0,0,224,16,8 :rem 233 
70 DATA4,4,132,196,36,8,16,32,32,32,32,64 :rem 9 
80 PRINT"{CLR}WHEN YOU WISH TO SEE{2 SPACES}THE SPECIAL EFFEC 

TS{3 SPACES}JUST PRESS Fl" :rem 226 
85 PRINT"{DOWN}WHEN YOU WISH TO STOP THE PROGRAM PRESS F7" 

90 GETB$ :IFB$=""THEN90 
100 A$="TRY{ DOWN} {3 LEFT }ME {DOWN} {3 LEFT} NOW" 
110 PRINT" {CLR} {8 DOWN} {9 RIGHT}"A$ 
120 GETB$:IFB$="{Fl}"THENGOSUB1000 
130 IFB$=" {F7} "THENF=l :GOT04 
140 GOT0120 
1000 IFPEEK(36869)=192THENPOKE36869,204:RETURN 
1010 IFPEEK(36869)=204THENPOKE36869,192:RETURN 

80 

:rem 165 
:rem 247 
:rem 204 
:rem 232 
:rem 126 

:rem 28 
:rem 97 

:rem 249 
:rem 250 



Todd I 
Wilson Faster BASIC 

One minor annoyance programmers face when working with the VIC is 
reading the joystick. The designers could at least have put all the inputs in a 
single memory location instead of scattering them all over the place. A 
BASIC command would have been nice, too. 

Another problem is the screen manipulation. PEEKs and POKEs are too 
slow and cumbersome for really fast and efficient games. Again, another 
BASIC command or two would have been useful. 

"Joyfast" and "Fasplot" make use of the VIC USR function. Fasplot also 
uses the USR function for looking at the screen, but it uses the SYS com
mand in place of POKE. 

In the BASIC ROM, there are subroutines to get and convert numbers 
from BASIC lines to machine language. Location 56475 ($DC9B) takes the 
value in the floating-point accumulator and converts it to an integer number. 
Its complement location, 54161 ($D391), converts the A and Y registers to 
floating-point. Location 52989 ($CEFD) checks for a comma, location 52638 
($CD9E) gets the number after the comma, and location 55287 ($D7F7) con
verts the number to a positive whole number from 0 to 65535. 

Program 1 is Joyfast. USR(O) returns the fire button status. A one means 
the fire button is depressed, and a zero means that it is up. USR(l) returns 
the joystick direction from 0 to 8: 
USR(1) Direction 

o Center 
1 N 
2 NE 
3 E 
4 SE 
5 S 
6 SW 
7 W 
8 NW 

Program 2 is Fasplot. USR(O),x,y returns the character number at column 
x, row y. USR(l),x,y returns the color of the location at column x, row y. 
And SYS address,x,y,i,j puts the character number in variable i at column x, 
row y, and colors it with the color number in variable j. The program dis
plays the address to use based on your particular memory configuration. 

I A Bug 
Because I wanted to conserve as much memory as possible, one bug remains. 
Whenever you use the SYS, the USR(O), or the USR(l) function in Fasplot, 
the cursor location is altered to the location looked at or plotted to. This may 

81 



I Utilities 

not be much of a problem, but it can upset programmers when they are try
ing to write a game and the score keeps flying all over the screen. 

Program 1. Joyfast 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 A=PEEK(55)+PEEK(56)*256-1~~:A%=A/256:POKE56,A%:POKE55,A-A%* 
256:CLR :rem 37 

2 POKE~,76:POKE1,PEEK(55):POKE2,PEEK(56):Q=PEEK(1)+PEEK(2)*25 
6:H=Q+68:L=H+16 :rem 199 

3 HH=INT(H/256):HL=H-HH*256:LH=INT(L/256):LL=L-LH*256:rem 1~5 
1~ DATA12~,32,155,22~,165,1~1,2~8,15 :rem 4 
2~ DATA173,17 ,145,162,~,16~,~,41 :rem 66 
3~ DATA32,2~8,43,16~,1,2~8,39,2~1 :rem 12~ 
4~ DATA1,2~8,39,169,127,141,34,145 :rem 186 
5~ DATA173,32,145,42,42,41,1,133 :rem 7~ 
6~ DATA255,169,255,141,34,145,173,17 :rem 38 
7~ DATA145,74,41,14,5,255,17~,188 :rem 142 
8~ DATAHL,HH,189,LL,LH,17~,138,32 :rem 65 
9~ DATA145,211,88,96 :rem 2~ 
1~~ FORJ=QTOQ+67:READA$:A=VAL(A$):IFA$="HL"THENA=HL :rem 1~8 
11~ IFA$="HH"THENA=HH :rem 212 
12~ IFA$="LL"THENA=LL :rem 229 
13~ IFA$="LH"THENA=LH :rem 222 
14~ POKEJ,A:NEXT :rem 244 
15~ FORJ=0T015:READA :rem 212 
16~ POKEJ+H,A:POKEJ+L,~:NEXT :rem 239 
17~ DATA .,., .,6, .,8, .,7,., .,4,5,2,1,3,~ :rem 92 

Program 2. Fasplot 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

~ A=PEEK(55)+PEEK(56)*256-130:POKE56,A/256:POKE55,A-PEEK(56)* 
256:CLR :rem 95 

1 S=PEEK(55)+PEEK(56)*256:XX%=PEEK(56):XX=PEEK(55) :Y=S+12:YY% 
=Y/256:YY=Y-YY%*256 

2 X=S+45:POKE~,76:POKE2,X/256:POKE1,X-PEEK(2)*256 
10 DATA32,253,2~6,32,158,205,32,247 
20 DATA215,165,1~1,96,32,126,29,165 
3~ DATA101,2~1,22,16,21,133,254,32 
40 DATA126,29,165,101,2~1,23,16,1~ 
5~ DATA133,255,164,254,17~,24,32,240 

60 DATA255,96,76,72,210,120,32,155 
7~ DATA22~,162,~,165,101,24~,2,162 

80 DATA12~,134,253,32,138,29,165,209 
9~ DATA133,247,165,210,101,253,133,248 
100 DATA164,211,177,247,166,253,240,2 
11~ DATA41,15,168,169,~,32,145,211 
120 DATA88,96,120,32,138,29,32,126 

82 

:rem 25 
:rem 133 
:rem 226 
:rem 234 
:rem 155 
:rem 164 
:rem 21 

:rem 187 
:rem 161 

:rem 3~ 
:rem 123 

:rem 73 
:rem 173 
: rem 189 



r 
Utilities I 

130 DATA29,165,101,133,252,32,126,29 :rem 20 
140 DATA165,101,133,253,165,209,133,243 :rem 169 
150 DATA165,210,105,120,133,244,164,211 :rem 156 
160 DATA165,252,145,209,165,253,145,243 :rem 184 
170 DATA88,96 :rem 189 
180 FORJ=STOS+129:READA:POKEJ,A:~EXT :rem 71 
190 POKES+14,XX%:POKES+13,XX:POKES+25,XX%:POKES+24,XX:POKES+9 

6,XX%:POKES+95,XX :rem 212 
200 POKES+103,XX%:POKES+102,XX:POKES+61,YY%:POKES+60,¥Y 

210 PRINT"SYS"S+90" ,X,Y ,CHR,COL" 
: rem 166 
:rem 170 

83 





Chapter 
Three 

Sound 
and Graphics 





ca~~::;~~ I Paddle Graphics 

When I was a child, one of my favorite toys was a plastic drawing board. It 
had two knobs, one for horizontal and one for vertical, and they controlled 
the movement of a stylus beneath the board's clear plastic "screen." Now 
the VIC-20 can be programmed to do much the same thing. Game paddles 
serve the function of horizontal and vertical controls, and the VIC has the 
added advantage of being able to draw (on a television screen) in color. 

I first tried writing such a program in BASIC, and it worked beautifully 
except for one major flaw: The human hand is faster than BASIC. Unless the 
paddles were turned very slowly, the program would skip across the screen, 
leaving a trail of widely spaced dots rather than a solid line. Machine lan
guage was the logical solution. 

Another problem cropped up once I began to get the program working 
in machine language. The two analog-to-digital converters in the VIC are not 
extraordinarily stable. Since those AjD converters are what makes the pad
dles work, that means the paddles are pretty jumpy. 

I Reading the Paddle 
The flicker problem can be reduced through programming. The "Paddle 
Graphics" program does this by reading each paddle 128 times, adding the 
values together, and then dividing the sum by 128 to get an average value. 

The fact that 256 additions are performed in a fraction of a second 
should give you an idea of how fast machine language operates. The more 
readings that are averaged, the less flicker there will be. However, there is a 
greater chance of the program skipping across the screen, because the 
averaging slows the program slightly. Taking 128 readings on each paddle is 
essentially a compromise between the two concerns. Also, it is no accident 
that the number of readings is a power of two. That greatly simplifies the di
vision. To divide a binary number by 128, its bits simply are shifted seven 
places to the right. 

I Using Paddle Graphics 
When the program is run, it first displays its name, "Paddle Graphics." Then 
the screen shrinks to about half its usual area and is filled with multicolor 
garbage. You can clear the screen by pressing the RETURN key. Now you 
are ready to draw. You have four colors to chose from: background white, 
which is activated by the f1 key; cyan, f3; purple, f5; and green, f7. Cyan 
and purple may seem like strange colors, but there are reasons for them. If 
nothing appears when you move the paddles, try changing the colors by 

87 



Sound 
and Graphics 

pressing the £1 key. Cyan is used because it is the normal border color. Pur
ple serves as a brighter alternative to the VIC's somewhat dull red. You can 
give yourself a different selection of colors by modifying the machine lan
guage program. We'll get into that later. 

I Entering the Program 
Paddle Graphics is in the form of a BASIC loader program. First, unplug any 
memory expanders you might have. Next, enter the following line before 
entering the program: 
POKE 44,18:POKE 4608,O:NEW 

If you forget to enter these POKEs, don't worry. Just finish typing and save 
the program. Then enter the POKEs and reload. 

Now enter the program. Save it before you run it! When you run the 
BASIC loader, it will check its DATA statements for errors before POKEing 
the numbers into memory. If there are any errors, their line numbers will be 
listed on the screen, and the loader will stop so that you can correct those 
lines. (Lines 80 and 90 are treated as one line. An error in either will produce 
"80-90".) If there are no mistakes in the DATA statements, the loader will 
announce DATA OK-STORING and give you a READY when it finishes. If, 
instead, you get SYNTAX ERROR IN 70, you have forgotten to enter the line 
above. 

Once you get it right, the loader will transform itself into a new pro
gram. LIST will reveal three lines of BASIC you've never seen before. Save 
the new program. Now, Paddle Graphics is ready to run. As a side effect of 
the BASIC loader, it may draw in two colors at once, but as soon as you hit 
a function key, that will be corrected. 

I Changing Colors 
If you want to fiddle with the color choices, turn to the screen and border 
color chart on page 134 in the computer manual (or page 265 in the Pro
grammer's Reference Guide). The screen and border colors (£1 and f3, respec
tively) are independent of the Paddle Graphics program. You set them by 
POKEing a number from the chart into location 36879. You can pick from 16 
colors for the screen and 8 for the border. For example, an orange screen 
with a black border is 136. Stopping the Paddle Graphics program with the 
RUN/STOP key will reset the screen to its normal white with cyan border 
and will allow you to POKE 36879 with your color choice. 

The other two colors, the character color (f5) and the auxiliary color (f7), 
are controlled by the program. To change them you will have to modify the 
program, but fortunately that is only a matter of making a few POKEs once 
you have loaded it. 

88 



Sound I 
and Graphics 

There are eight character colors, the same eight as for the border, and 
they are indicated by the numbers 0-7. If you look at the color chart again, 
the border colors across the top begin with black (0) and end with yellow (7). 
Add 8 to that number and POKE the sum into 4284. Add 512 to that address 
if you have 8K expansion or greater. Subtract 3072 for 3K expansion. For ex
ample, to get yellow with 8K, POKE 4796,15. 

The auxiliary color can be any of the 16 colors also available to the 
screen. Black, at the top of the list, is again O. Light yellow, at the bottom, is 
15. Multiply that number by 16 and POKE the product into 4305 or the 
equivalent location. Pink with 8K would require POKE 4817,160. 

Paddle Graphics 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 PRINT"{CLR}CHECKING DATA":CLR:V=0 :rem 51 
20 S=0:FORQ=0T024:READR:S=S+R:NEXTQ:READR:IFS<>RTHENPRINT"80 

{SPACE}- 90":V=1 :rem 162 
30 FORZ=0T031 :H=0 :FORY=0T015 :READX :~V=W+X :NEXT: R~I\DX: IFX<>~'VTHE 

NPRINT5000+Z*10, :V=l :rem 48 
40 NEXT:IFV=lTHENSTOP :rem 165 
50 CLR:PRINT"DATA OK - STORING" : rem 88 
60 FORS=828T0852:READR:POKES,R:NEXTS:READX :rem 29 
70 FORZ=0T031:FORY=0T015:READX:POKE4096+Z*16+Y,X:NEXTY:READX: 

NEXTZ :rem 103 
80 DATA162,1,160,16,134,43,132,44,162,246,160,17,134,45,132 

:rem 122 
90 DATA46,134,47,132,48,134,49,132,50,0,2360 :rem 165 
100 SYS828 :rem 50 
5000 DATA0,62,16,10,0,153,34,147,8,17,17,17,17,17,17,17,549 

:rem 125 
5010 DATA29,29,29,29,80,65,68,68,76,69,32,71,R2,65,80,72,944 

:rem 235 
5020 DATA73,67,83,34,58,153,34,17,29,29,29,66,89,32,74,65,932 

:rem 22 
5030 DATA77,69,83,32,67,65,76,76,79,87,65,89,34,0,77,16,992 

:rem 21214 
5040 DATA20,0,129,83,178,48,164,55,48,48,58,130,0,lf2!4,16,30,1 

III :rem 121 
5050 DATA0,158,40,194,40,52,51,41,170,194,40,52,52,41,172,50, 
1347:rem 165 

5060 DATA53,54,170,49,48,57,41,0,f3,f3,0,0,0,0,169,11,G52 
:rem 167 

5070 DATA141,0,144,169,37,141,1,144,173,2,144,41,128,9,16,141 
,1431 :rem 212 

5080 DATA2,144,169,32,141,3,144,173,5,144,41,240,9,13,141,5,1 
406 :rem 112 

50913 DATA144,169,0,16f3,f3,174,136,?,132,251,134,252,145,251,20 
0,24,2174 :rem 151 

89 

-



I Sound 
and Graphics 

5100 DATAI05,1,24,192,0,208,245,24,160,0,173,2,144,41,128,162 
,1609 :rem 202 

5110 DATAI50,201,128,240,2,162,148,134,252,162,0,169,12,145,2 
51,200,2356 :rem 244 

5120 DATA24,208,250,232,230,252,224,2,208,243,24,173,14,144,4 
1,15,2284 :rem 149 

5130 DATA9,80,141,14,144,32,225,255,208,3,32,210,254,32,228,2 
55,2122 : rem 54 

5140 DATA201,13,208,27,160,0,162,20,132,251,134,252,169,0,145 
,251,2125 :rem 139 

5150 DATA24,200,208,250,232,230,25~,24,224,28,208,242,24,144, 
214,56,2560 :rem 251 

5160 DATA233,133,144,8,24,201,4,176,3,141,60,3,24,162,0,134,1 
450 :rem 100 

5170 DATA251,134,252,134,253,134,254,24,173,8,144,101,251,133 
,251,144,2641 :rem 102 

5180 DATA2,230,252,24,173,9,144,101,253,133,253,144,2,230,254 
,24,2228 :rem 103 

5190 DATA232,224,128,208,226,102,252,102,251,24,102,254,102,2 
53,24,232,2716 :rem 140 

5200 DATA224,135,208,241,24,144,2,144,140,165,251,113,251,24, 
106,106,2298 :rem 46 

5210 DATA106,106,41,15,133,252,165,251,24,106,41,6,133,251,16 
5,253,2048 :rp-m 202 

5220 DATA73,255,133,253,24,106,106,106,106,41,15,133,254,165, 
253,24,2047 :rem 2 

5230 DATAI06,41,6,133,253,24,169,0,162,0,6,252,232,42,24,224, 
1674 :rem 162 

5240 DATA7,208,247,24,105,20,141,62,3,16Q,0,162,0,24,6,254,14 
32 :rem 60 

5250 DATA232,144,1,42,24,224,3,208,245,24,109,62,3,141,62,3,1 
527 :rem 110 

5260 DATA24,144,2,144,162,165,251,101,254,144,3,238,62,3,24,1 
01,1822 :rem 52 

5270 DATA252,144,3,238,62,3,133,251,173,62,3,133,252,234,162, 
O,2105 :rem 4 

5280 DATAI69,192,228,253,240,5,232,106,24,144,247,73,255,160, 
0,49,2377 :rem 189 

5290 DATA251,145,251,200,145,251,173,60,3,24,106,106,106,24,1 
62,O,2007 :rem 143 

5300 DATA228,253,240,5,232,106,24,144,247,160,0,17,251,145,25 
1,200,2503 :rem 194 

5310 DATA145,251,24,144,174,0,0,0,0,0,0,0,0,0,0,0,738 :rem 34 

90 



Rit~~I~ I VIC Graph 

Many VIC-20 users want to use custom characters in their programs, but 
there seems to be a lot of confusion over how to handle them. My interest in 
custom characters is in their use for graphic displays of numeric data. This 
involves a process known as bitmapping, where each pixel (dot) on the 
screen (or portion of the screen) may be turned on or off individually. 

In the VIC-20, the video chip can get its character data from several areas 
of memory. The address of this data is controlled by the register at 36869 
(lower four bits). To use custom characters, it must be set for an area of 
RAM. The starting address for the data may be 4096, 5120, 6144, or 7168 as 
well as several ROM addresses. 

The position of the screen in memory is controlled by two registers-
36869 (upper four bits) and 36866 (bit 7). The screen may be placed any
where between 4096 and 8191 in 512-byte increments. This means that there 
are about 64 possible combinations of character/screen placement, although 
some of these will result in strange screen displays. The corresponding 
POKEs are detailed in the VIC Programmer's Reference Guide. For everything 
to work properly, the screen, characters, and program must be in separate 
areas of memory. 

To be sure that BASIC doesn't change the screen or character data when 
using custom characters, it is necessary to change the start-of-BASIC pointer 
(43-44), or the top-of-strings pointer (51-52) and top-of-memory pointer 
(55-56). With the 8K (or 16K) expander, the screen is placed at 4096 on 
power-up with the start of BASIC at 4609. For custom characters, I place the 
character data at 4096 and move the screen to 5120 (for 64 characters) or 
5632 (for 128) or 6144 (for 256). The start of BASIC must then be set above 
the end of the screen. Note that the start-of-BASIC pointer must be changed 
before the program is loaded. 

My solution to this is to record a short program with the required 
POKEs immediately before my graphics program. Program 1, which requires 
8K or more memory expansion, will move the screen to 6144, and the start 
of BASIC to 6657, leaving space to program 256 characters (2K). Line 10 
moves BASIC and line 20 moves the screen. 

Program 1 erases itself when run so be sure to save a copy before run
ning. After generating your custom characters, POKE 36869,236 to use them 
on the screen, or POKE 36869,224 to return to the regular characters. I 
usually copy some of the ROM characters into RAM-the first 64 include the 
letters, numbers, and punctuation-so that I can display graphics and regular 
text at the same time. 

91 



Sound 
and Graphics 

I The Start of BASIC 
A word about that POKE in line 10: In order for a program to run, the byte 
immediately preceding the start of BASIC must contain zero. On power-up 
with, say, the 8K expander, the start of BASIC is at 4609. There will always 
be a zero at 4608. If the start of BASIC is changed, that zero must be POKEd 
into the new location or a program will not run, although it will list. To 
demonstrate this, load a program and POKE 4608,1 (or any other number 
except zero). The program will still list, but a RUN will result in a SYNTAX 
ERROR. Now, POKE 4608,0 and the program will again run normally. (For 
the unexpanded VIC, it's 4096.) 

With the unexpanded VIC (or 3K expander), it is not necessary to 
change the start of BASIC, since the screen and character data may be placed 
at the top of memory. The POKEs to change the top of memory and top of 
strings may now be placed in the main program. 

I Not All or Nothing 
One misconception is that creating custom characters is an all-or-nothing 
situation. By setting the character data pointer to 7168 and the screen at 
6656, it is possible to have 128 custom characters and still use the normal 
ROM characters without copying them into RAM. Printing reversed charac
ters will now print the normal (unreversed) character set. This technique al
lows graphics and regular text in the same display without using up too 
much of the VIC's limited memory. 

I Using the Programs 
Programs 2 and 3 are adaptations of one of my data plotting programs. Pro
grams 1 and 2 are for the 8K expander, while program 3 is for the un
expanded VIC (or 3K expander). In each case, lines 6000-6180 comprise a 
subroutine that can be added to your programs. To use them, load your data 
into an integer array, A %. Put your title into a string variable, N$. A COSUB 
6000 will now display your data as a graph. Press any key to return to the 
main program. The routine automatically scales the graph to fit the data and 
prints the high and low limits on the screen. Note that only integer data in 
the range from -32768 to +32767 may be used. Remember, with an 8K 
expander, Program 1 must be loaded and run first. 

I have made extensive use of multiple statements per line in addition to 
using the integer array in order to save memory. In an unexpanded VIC, 
Program 3 will leave about 1.6K for your main program. 

92 



Sound 
and Graphics 

Program 1. 8K Setup 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 POKE44,26:POKE6656,0 
20 POKE648,24:POKE36869,224 
50 PRINT"(CLR}":NEW 

Program 2. Graph Expanded 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

:rem 40 
:rem 2 

:rem 237 

10 OIMA%(95):FORI=8T051l:POKE4096+I,PEEK(32768+I) :HEXT 
:rem 194 

20 FORI=4096T04103:READJ:POKEI,J:NEXT:OATA0,0,0,8,8,0,0,0 
:rem 102 

30 FORI=0T095:A%(I)=SIN(I/12)*100:NEXT :rem 210 
40 N$=" PLOT OF SIN FUNCTION" : rem 123 
50 GOSUB6000 :rem 171 
60 END :rem 61 
6000 HI=-32768:LO=32767:FORI=0T095 :rem 206 
6010 IFHI <A% ( I) THENHI=A% ( I) : rem 32 
6020 IFLO>A%(I)THENLO=A%(I) :rem 55 
6030 NEXT:DF=HI-LO :rem 98 
6040 POKE36869,236:POKE36879,25 :rem 221 
6050 PRINT"(CLR}" :rem 47 
6060 FORI=37888T038393:POKEI,6:~EXT :rem 133 
6070 FORI=4608T06143:POKEI,0:NEXT :rem 4 
6080 FORI=0T011:FORJ=0T015:POKE6173+22*J+I,64+16*I+J:NEXT:NEX 

T :rem 4 
6090 FORI=0T013:POKE6150+I,0:POKE6524+I,0:NEXT :rem 251 
6100 FORI=0T015:POKE6172+22*I,0:POKE6185+22*I,0:NEXT :rem 24 
6120 HI$=STR$(HI):LO$=STR$(LO) :rem 249 
6130 PRINT" (HOME} {omm} "TAB (6-LEN( HI $) ) HI $ : PRINT" {14 Dm-lN} "TA 

B(6-LEN(LO$»LO$:PRINT"(3 DOWN}"N$ :rem 198 
6140 FORX=0T095 : rem 136 
6150 Y=INT(127*(HI-A%(X»/DF):BY=4608+128*INT(X/8)+Y:BI=8*rNT 

(X/8)+7-X :rem 210 
6160 POKEBY,PEEK(BY)oR(2iBI):NEXT :rem 90 
6170 GETZ$:IFZ$=""THEN6170 :rem 241 
6180 POKE36869,224:PRINT"(CLR}":RETURN :rem 138 

Program 3. Graph Unexpanded 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 POKE52,26:POKE56,26:CLR 
20 DIMA%(79) 
30 FORI=0T079:A%(I)=SIN(I/12)*100:NEXT 
40 N$="PLOT OF SIN FUNCTION" 
50 GOSUB6000 
60 END 

:rem 14 
:rem 99 

:rem 212 
:rem 123 
:rem 171 

:rem 61 

93 



Sound 
and Graphics 

6000 HI=-32768:LO=32767:FORI=0T079 :rem 208 
6010 IFHI<A%(I)THENHI=A%(I) :rem 32 
6020 IFLO>A%(I)THENLO=A%(I) :rem 55 
6030 NEXT:DF=HI-LO :rem 98 
6040 POKE36869,239:POKE648,26:POKE36879,25:PRINT"{CLR}" 

: r'~m 29 
6050 FORI=6656T07161:POKEI,160:NEXT :rem 111 
6060 FORI=38400T038905:POKEI,6:NEXT :rem 113 
6070 FORI=7168T08127:I?OKEI,0:NEXT :rem 12 
6080 FORI=0T09 :FORJ=0T011 :POKE6685+22*J+I, 12* [+,7 :1\j"r~XT: NF.:XT 

:rem 70 
6090 FORI=0T09:POKE6663+I,192:POKE6949+I,192:NEXT :rem 188 
6100 FORI=0T011:POKE6684+22*I,221:POKE6695+22*I,~21:NEXT 

:rem 236 
6110 POKE6662,240:POKE6673,238:POKE6948,237:POKE6959,253 

:rem 173 
6120 HI$=STR$(HI):LO$=STR$(LO) :rem 249 
6130 PRINT" {HOME} {RVS} {OOWN} "TAB (6-LEN( HI $) ) HI $: PRI N'r" 

{10 DOWN} {RVS} "TAB( 6-LEN( LO$» LO$: PRINT" {3 Do\'/N} {RVS} "N$ 
: rem 184 

6140 FORX=0T079 :rem 138 
6150 Y=INT(95*(HI-A%(X»/DF):BY=7168+96*INT(X/8)+Y:BI=8*INT(X 

/8)+7-X :rem 126 
6160 POKEBY,PEEK(BY)OR(2tBI):NEXT :rem 90 
6170 GET~$:IFZ$=""THEN6170 :rem 241 
6180 POKE648,30:POKE36869,240:PRINT"{CLR}":RETURN :rem 34 

94 



Di;7~~ I Sprite-Imation 
Sprites are high-resolution, smoothly moving characters often used in 
graphic displays and game programs. Formerly, sprites were available only 
on computers equipped with special hardware, but now the VIC can also cre
ate sprites for a wide variety of uses. People familiar with sprite program
ming on the Commodore 64 should have no problem adapting sprites for 
use on the VIC. 

I Sprites 
First, let's get the machine language program necessary to create the sprites 
in memory so that you can experiment as you read. Once you have the ma
chine language routine in memory, all commands can be entered through a 
BASIC program. But more on that later. 

Turn your VIC off and attach an 8K or greater expander. (Although 
"Sprite-Imation" needs no expansion, the loader program does.) Now type in 
and save Program 1 using the filename SPRITE LOADER. Program 1 is a 
BASIC loader program that will write the machine language program to disk 
using the filename SPRITE-IMATION. Tape users should change the ,8,0 in 
line 50 to ,1,0. When you have saved Program 1, enter the following line in 
direct mode: 
POKE 44,30:POKE 7680,0:NEW 

Now, load Program 1 and run it. The program will take about a minute 
to POKE the machine language program into memory and save it out to disk 
or tape. If you have made an error, the program will tell you. Correct the 
data, res ave the program, and run it again. If the program runs successfully, 
you will have the machine language on tape or disk under the filename 
SPRITE-IMATION. 

Sprite-Imation works with an unexpanded VIC or with 3K expansion 
memory. To use it, load the machine language: 
LOAD "SPRITE-IMATION",8,1 (use ,1,1 for tape) 

Once it is loaded, enter 
SYS 6000 

to activate the machine language. You'll see a new startup screen with 
Sprite-Imation printed across the top. Now, type in Program 2, the demo 
program, save it, and then run it. 

The remainder of this article will explain what you'll need to know to 
use this routine to create your own sprite. 

95 



I Sound 
and Graphics 

I What Shape? What Color? Where? 
All you have to do is tell Sprite-Imation what shape to be, what color to be, 
and where to be drawn on the screen. Sprites may be any of 8 colors in stan
dard mode or any of 16 colors in multicolor mode. Control of the sprites 
may be accomplished via special BASIC commands, POKE statements, or 
6502 machine language. Four sprites are available on the VIC, and these are 
larger than the standard-sized sprites available on other Commodore 
computers. 

Features of the VIC sprites 
1. 16 horizontal bits X 24 vertical bits 
2. Individual color control of sprites 
3. Sprite multicolor mode 
4. Variable sprite-to-sprite priority 
5. Sprite-sprite collision detection 
6. Sprite-background collision detection 

These capabilities make it simple to program large, smoothly moving 
characters on the VIC. Using the special graphic commands available 
through Sprite-Imation, it is possible to produce high-quality, animated 
graphic displays in BASIC. 

Sprite-Imation creates four sprites numbered 0-3. To create a sprite, the 
proper numbers must be POKEd into each of five registers, or used with the 
BASIC commands GR (the back-arrow character) to clear the screen and en
ter sprite mode, SP (the @ character) to give each sprite its position, and D (£ 
character) to draw the sprite. (Each of the three BASIC commands will be 
printed on the VIC screen with a special reverse-type character.) 

Figure 1 is a chart of the sprite registers. Although it may appear com
plicated, only three registers are necessary to create a sprite in addition to its 
X, Y position registers. 

I Defining the Sprite 
The sprite is defined in the same way that custom characters are defined, but 
more data is required since the sprite is larger. The sprite consists of six 
characters, therefore a total of 48 bytes are needed to define a sprite. This 
data may be placed in any portion of memory with some exceptions. Data 
cannot be placed in memory below 1020 ($03FC) or in the area occupied by 
the Sprite-Imation program, 5754-6144 ($167 A-$1800) and 7136-7679 
($1 BEO-$l DFF). The remaining memory of 2649 bytes may be used to store 
data or programs. Even more memory is available with 3K expansion 
memory. 

96 



Sound I 
and Graphics 

The most efficient place for data is within the redefined character matrix, 
6144-6656 ($1800-$1AOO). However, care must be taken here since the user 
should not place data in the same memory occupied by the alphabetic or nu
meric sequence. A complete memory map of Sprite-Imation is shown in 
figure 2. 

Figure 1. Important Sprite-Imation Registers 
Sprite Number 

Function 0 1 2 3 
Location of sprite data 720 721 722 723 

$0200 $0201 $0202 $0203 
Position of sprite on screen (X) 730 732 734 736 

$020A $020C $020E $02EO 
Position of sprite on screen (Y) 731 733 735 737 

$020B $0200 $020F $02E1 
Enable sprite (on if <> 0) 740 741 742 743 

$02E4 $02E5 $02E6 $02E7 
Sprite multicolor mode (on if <> 0) 746 746 746 746 

$02EA $02EA $02EA $02EA 
Sprite foreground color (0-7) 750 751 752 753 

$02EE $02EF $02FO $02F1 
Sprite auxiliary color (0-255) 36878 36878 36878 36878 

$900E $900E $900E $900E 
Sprite-sprite collision (O=none) 756 757 758 759 

$02F4 $02F5 $02F6 $02F7 
Sprite-background collision (O=none) 762 763 764 765 

$02FA $02FB $02FC $02FO 
Number of sprites (1-4) 725 725 725 725 

$0205 $0205 $0205 $0205 
Alternate joystick register (X: 0-2) 726 726 726 726 

$0206 $0206 $0206 $0206 
Alternate joystick register (Y: 0-2) 727 727 727 727 

$0207 $0207 $0207 $0207 
Alternate joystick register (fire button) 728 728 728 728 

$0208 $0208 $0208 $0208 

One method of placing sprite data within the character matrix is to first 
POKE 36869,240. This moves the character matrix from 6144 to its default 
value at 32768. However, if this is done, you must POKE 36869,254 before 
sprites are placed on the screen. Also, characters cannot be printed or POKEd 
onto the same screen as sprites are located with this method. This method 
does let you use as many as four sprites and 40 custom characters simulta
neously, however. While the Sprite-Imation program is running with 254 in 

97 



I Sound 
and Graphics 

36869, only the first 64 characters of the character matrix may be used. All 
reverse characters and graphic characters are unavailable unless register 
36869 is returned to its default value of 240. 

Another place to locate sprite data is below the Sprite-Imation program. 
To do this, you must lower the top of memory below the sprite data. 

Figure 2. Large-Scale Memory Map of Sprite-Imation 

Function 
Sprite-Imation registers 

and data 
Vector addresses and 

system variables for sprites 
3K Expansion RAM memory 

User BASIC memory in RAM 

Sprite-Imation interpreter 
and subroutines 

Sprite-Imation character 
matrix in RAM 

Sprite-Imation work area 
and main program 

Start 
Address 
720 
$0200 
766 
$02FE 
1024 
$0400 
4096 
$1000 
5754 
$167A 
6144 
$1800 
6656 
$lAOO 

End 
Address 
765 
$02FO 
1020 
$03FC 
4095 
$OFFF 
5753 
$1679 
6143 
$17FF 
6655 
$19FF 
7679 
$10FF 

Sprite data is calculated in the same way that data is calculated for 
custom characters. The difference between VIC-20 sprites and Commodore 
64 sprites is that VIC sprite data is calculated vertically instead of hori
zontallyas 
Byte 0 
Byte 1 
Byte 2 

Byte 23 

Byte 24 
Byte 25 
Byte 26 

Byte 47 

To calculate the sprite data, you must first draw your sprite on a grid of 
16 dots X 24 dots. Graph paper is the easiest thing to use for this purpose. 
Outline an area corresponrl.:'ag to the 16 block X 24 block size of the sprite. 
Fill in the blocks in the pattern of your sprite. The blocks that are filled in 
will appear to be "on" when the sprite is projected onto the screen. Any 

98 



Sound 
and Graphics 

background characters placed on the screen will appear to be behind your 
sprite. 

The computer, however, cannot tell what a sprite looks like until the 
shape of the sprite is given to it in the form of data. The computer requires 
numbers that it can understand, and you must calculate these numbers for 
the computer. 

Using two 8 X 24 grids you can calculate the values; figure 3 is an 
illustration. Just fill in the boxes you need. Then, using the values at the top 
of each column, add the values of the filled-in boxes for each row. 

Figure 3. Sprite Grid Illustration 

263 

8 4 2 6 842 

Iqk;1""",'~n,, 

~ 
~~li 

;~2~ .. 
!2.'1'S'" "~"iii"',, inc' 

,:iiC;'! 

'"~eddie," ,dL" 
ii;,::'" 

>'dT 

';'~ 

~ 'i"d Ij'< 

';d~. :'b:! 

Ii "d,"," lid' "T !;,::,~;, 

3 

3 

7 

4 

4 

4 

15 

8 

63 

63 

234 

234 

234 

255 

246 

255 

o 
o 
o 
o 
o 
o 

263 1 

8 4 2 6 842 

II 
192 

192 

,;"i,,; 64 

l',',,! 64 

rei"~::::: ;,d~;!i;,: 224 

J;k: 32 

~~,""~' 32 

}::,i}::: 32 

IC'if Id T;:,' ,';'r, 240 

j';:, 16 

1",2!',' ;;';,,': [;;:; ;i'i'C' 'i,d: ,,,,c, 
252 

fDd" il"d, ~,;, 1,':);, ~;!;,t: d'i,i 252 

li"''[;' ~":,,J ,L,',' r"Ck" },I •• ··' ••• 87 

:;,i,,;; 1,1';' ••• I,":< ;" f',i 87 

';",;'! ~;:,;, ~;;" ;],,' ,> 87 

I,;';.';': ',',iii:' I::T~': :~:; tel,;, ii, :ii""". 255 

,i'i;",liX: m', ," i, \ 111 

1'::' i.",; ~';,,' It,') [fe"~ " ",i ,i', , 255 

0 

0 

0 

0 

0 

0 

99 



I Sound 
and Graphics 

This data can now be POKEd into memory but Sprite-Imation must also 
be told where in memory to find sprite information. This is done by 
POKEing the proper number into registers 720-723 ($02DO-$02D3). Memory 
is divided into 48-byte blocks for this purpose, and the number N used in 
registers 720-723 may be multiplied by 48 to find the location of the sprite 
data. 

I Demonstration 
A simple demonstration program is given below. The REM statements in the 
program may be deleted since they serve only to clarify the program and do 
not affect its function. 

10 POKE56,22:POKE52,22:POKE55,32:POKE51,32:REM LO\lliR TOP OF M 
EMORY 

20 FORI=5664T05711:READA:POKEI,A:NEXT:REM POKE SPRITE DATA IN 
TO MEMORY 

30 DATA3,3,1,1,7,4,4,4,15,8,63,63,234,234,234,255,246,255,0,0 
,0,0,0,0 

40 DATA192,192,64,64,224,32,32,32,240,16,252,252,87,87,87,255 
,111,255 

50 DATA0,0,0,0,0,0 
60 POKE720,118:REM TELL SPRITE 0 \mERE TO FIND DATA 
70 POKE750,7:REM MAKE SPRITE 0 YELLOH 
80 POKE36879,106:REM HAKE SCREEN BLUE 
90 POKE725,1:REM MAKE ONLY FIRST SPRITE 
100 LET ~:REM SPRITE MODE 
110 FORI=0T0220:LET @ 0,I,I:REM POSITION SPRITE 0 
120 LET £:NEXT:REM DRAH SPRITE 
130 GOT0110 

The sprite can be drawn in multicolor mode with the addition of the 
following statements: 

94 POKE746,1:REM PUT IN MULTICOLOR MODE 
96 POKE36878,255:REM GIVE AUXILIARY COLOR 

Multicolor sprites are defined in terms of "bit pairs" instead of bits. Each 
bit pair can represent one of four colors: 

00 = Background color 
01 = Border color 
10 = Foreground color 
11 = Auxiliary color 

100 



I Sprite Positioning 

Sound 
and Graphics 

Once the sprite is defined, it must be placed on the screen. You can do this 
in two ways: You can POKE the X,Y coordinates of the sprite into the po
sition registers shown in figure 1, or you can use the SP statement (@ key) 
with X,Y coordinates. The proper syntax for this statement is 
LET SP N,X,Y 

If this statement is used at the end of a line, it must be followed by a 
semicolon. Multiple Sprite-Imation statements may follow a single LET 
statement: 
LET SP O,X,Y:SP 1,X,Y:SP 2,X,Y:SP 3,X,Y:D 

where the D statement (£ key) implements the Sprite-Imation program. Any 
X or Y between 32 and 208 will appear on the screen. 

I Turning a Sprite Off 
A sprite is turned on by placing a one in its enable register shown in figure 1 
or by using the Sprite-Imation SP statement. Once turned on, it will remain 
on until a zero is POKEd into its enable register. Also, a sprite may be tem
porarily turned off by placing a lower number in register 725 ($02D5). For 
instance, a two placed in 725 will cause the Sprite-Imation program to draw 
only sprites 0 and 1. If a one is placed in 725, it would produce only sprite O. 
The fewer sprites used in this manner, the faster the sprites may be moved 
around on the screen. 

Program 1. Sprite Loader 
For mistake-proof program entry, be sure to use 'The Automatic Proofreader," Appendix C. 

10 PRINT"{CLR}PLEASE \vAIT ... " :rem 62 
20 FORI=5754T06658:READA:POKEI,A:C=C+A:NEXT :rem 184 
30 FORI=7136T07679:READA:POKEI,A:C=C+A:NEXT :rem 185 
40 IFC<>131606THENPRINT"TYPING ERROR IN DATA":STOP :rem 119 
50 SYS57809"0:SPRITE-IMATION",8,0:REM USE ,1,0 FOR TAPE 

:rem 201 
60 POKE193,122:POKE194,22:POKE174,0:POKE175,30:SYS63109 

100 DATA 13,13,156,29,29,29,29,83,80,82,73 
110 DATA 84,69,45,73,77,65,84,73,79,78,31 
120 DATA 13,0,201,136,240,10,201,58,176,3,76 
130 DATA 128,0,76,138,0,32,79,23,32,115,0 
140 DATA 201,0,208,5,32,93,23,16,231,201,92 
150 DATA 208,19,173,213,2,208,2,169,4,201,5 
160 DATA 176,250,141,238,29,32,220,29,144,221,201 
170 DATA 95,208,7,169,147,32,210,255,144,210,201 
180 DATA 58,208,3,56,176,203,201,64,208,186,32 

:rem 188 
:rem 26 

:rem 4 
:rem 91 

:rem 208 
:rem 42 
:rem 55 
: rem 97 
:rem 56 

:rem 222 

101 



I Sound 
and Graphics 

190 DATA 115,0,176,45,201,52,176,41,56,233,47 :rem 165 
200 DATA 168,153,227,2,10,133,158,32,115,0,160 :rem 194 
210 DATA 2,132,159,32,253,206,32,138,205,32,247 :rem 253 
220 DATA 215,152,164,158,153,216,2,230,158,164,159 :rem 160 
230 DATA 136,208,232,240,149,76,8,207,32,80,23 :rem 214 
240 DATA 78,34,145,173,32,145,9,127,106,45,17 :rem 173 
250 DATA 145,170,10,10,10,138,105,0,41,95,73 :rem 93 
260 DATA 126,201,96,176,2,73,96,160,3,170,41 :rem 117 
270 DATA 3,201,2,176,2,73,1,153,213,2,138 :rem 203 
280 DATA 74,74,136,208,238,56,46,34,145,32,90 :rem 183 
290 DATA 23,76,112,247,120,141,161,2,142,162,2 :rem 197 
300 DATA 140,163,2,96,173,161,2,174,162,2,172 :rem 155 
310 DATA 163,2,88,96,189,60,3,133,158,189,61 :rem 138 
320 DATA 3,133,159,96,120,24,162,122,160,22,32 :rem 198 
330 DATA 153,255,32,164,227,162,4,189,165,23,149 :rem 70 
340 DATA 123,202,208,248,169,254,141,5,144,169,17 :rem 114 
350 DATA 160,23,141,40,3,140,41,3,166,51,32 :rem 40 
360 DATA 4,228,169,122,160,22,32,30,203,88,76 :rem 165 
370 DATA 129,227,234,76,146,22,234,169,30,133,147 :rem 119 
380 DATA 165,191,240,59,224,26,176,55,192,27,176 :rem 83 
390 DATA 51,138,56,233,4,48,45,170,152,56,233 :rem 175 
400 DATA 4,48,38,168,10,133,195,10,133,146,10 :rem 155 
410 DATA 10,24,101,195,24,101,146,134,146,24,101 :rem 29 
420 DATA 146,192,11,144,8,208,4,224,14,144,2 :rem 104 
430 DATA 230,147,133,146,133,91,96,234,169,32,133 :rem 113 
440 DATA 147,76,231,23,96,26,192,26,32,27,128 : rem 178 
450 DATA 27,128,27,128,27,145,181,181,145,215,215 :rem 116 
460 DATA 151,255,24,36,66,126,66,66,66,0,124 : rem 126 
470 DATA 34,34,60,34,34,124,0,28,34,64,64 :rem 219 
480 DATA 64,34,28,0,120,36,34,34,34,36,120 :rem 6 
490 DATA 0,126,64,64,120,64,64,126,0,126,64 :rem 63 
500 DATA 64,120,64,64,64,0,28,34,64,78,66 :rem 232 
510 DATA 34,28,0,66,66,66,126,66,66,66,0 :rem 186 
520 DATA 28,8,8,8,8,8,28,0,14,4,4 : rem 82 
530 DATA 4,4,68,56,0,66,68,72,112,72,68 :rem 137 
540 DATA 66,0,64,64,64,64,64,64,126,0,66 :rem 184 
550 DATA 102,90,90,66,66,66,0,66,98,82,74 :rem 247 
560 DATA 70,66,66,0,24,36,66,66,66,36,24 : rem 190 
570 DATA 0,124,66,66,124,64,64,64,0,24,36 :rem 225 
580 DATA 66,66,74,36,26,0,124,66,66,124,72 : rem 34 
590 DATA 68,66,0,60,66,64,60,2,66,60,0 :rem 80 
600 DATA 62,8,8,8,8,8,8,0,66,66,66 : rem 148 
610 DATA 66,66,66,60,0,66,66,66,36,36,24 :rem 191 
620 DATA 24,0,66,66,66,90,90,102,66,0,66 :rem 177 
630 DATA 66,36,24,36,66,66,0,34,34,34,28 :rem 182 
640 DATA 8,8,8,0,126,2,4,24,32,64,126 :rem 17 
650 DATA 0,60,32,32,32,32,32,60,0,135,219 :rem 199 
66O DATA 221,213,221,219,135,255,60,4,4,4,4 :rem 53 
67O DATA 4,60,0,0,8,28,42,8,8,8,8 :rem 81 
680 DATA 135,183,189,164,181,181,133,255,0,0,0 :rem 217 
690 DATA 0,0,0,0,0,8,8,8,8,0,0 : rem 161 

102 



700 DATA 8,0,36,36,36,0,0,0,0,0,36 
710 DATA 36,126,36,126,36,36,0,8,30,40,28 
720 DATA 10,60,8,0,0,98,100,8,16,38,70 
730 DATA 0,48,72,72,48,74,68,58,0,4,8 
740 DATA 16,0,0,0,0,0,4,8,16,16,16 
750 DATA 8,4,0,32,16,8,8,8,16,32,0 
760 DATA 8,42,28,62,28,42,8,0,0,8,8 
770 DATA 62,8,8,0,0,0,0,0,0,0,8 
780 DATA 8,16,0,0,0,126,0,0,0,0,0 
790 DATA 0,0,0,0,24,24,0,0,2,4,8 
800 DATA 16,32,64,0,60,66,70,90,98,66,60 
810 DATA 0,8,24,40,8,8,8,62,0,60,66 
820 DATA 2,12,48,64,126,0,60,66,2,28,2 
830 DATA 66,60,0,4,12,20,36,126,4,4,0 
840 DATA 126,64,120,4,2,68,56,0,28,32,64 
850 DATA 124,66,66,60,0,126,66,4,8,16,16 
860 DATA 16,0,60,66,66,60,66,66,60,0,60 
870 DATA 66,66,62,2,4,56,0,0,0,8,0 
880 DATA 0,8,0,0,0,0,8,0,0,8,8 
890 DATA 16,14,24,48,96,48,24,14,0,0,0 
900 DATA 126,0,126,0,0,0,112,24,12,6,12 
910 DATA 24,112,0,60,66,2,12,16,0,16,0 
920 DATA 96,240,248 
930 DATA 169,0,133,147,133,146,153,244,2,153,250 
940 DATA 2,185,208,2,24,121,208,2,38,147,24 
950 DATA 121,208,2,38,147,162,4,10,38,147,202 
960 DATA 208,250,133,146,152,10,141,255,2,168,185 
970 DATA 244,23,190,245,23,133,176,134,177,169,26 
980 DATA 133,88,133,90,190,218,2,185,219,2,134 
990 DATA 196,160,2,72,41,7,192,2,240,7,174 
1000 DATA 234,2,240,2,41,254,153,201,2,104,74 

Sound 
and Graphics 

:rem 101 
:rem 217 
:rem 61 
:rem 40 

: rem 101 
:rem 122 
:rem 183 
:rem 208 
:rem 41 

:rem 252 
:rem 181 
:rem 175 

:rem 64 
:rem 2 

:rem 172 
:rem 179 
:rem 127 
:rem 122 
:rem 162 

:rem 71 
:rem 83 
:rem 43 

:rem 176 
:rem 56 
:rem 62 

:rem 160 
:rem 110 
:rem 127 
:rem 229 

:rem 25 
:rem 132 

1010 DATA 74,74,153,199,2,165,196,136,208,227,173 :rem 126 
1020 DATA 203,2,133,89,24,105,8,133,87,160,95 :rem 163 
1030 DATA 169,0,153,0,26,136,16,250,24,160,24 :rem 146 
1040 D· ... TA 136,177,146,145,89,152,72,105,24,168,177 :rem 177 
1050 DATA 146,145,87,104,168.208,238,160,24,166,89 :rem 178 
1060 DATA 132,251,172,202,2,240,13,24,126,0,26 :rem 184 
1070 DATA 126,32,26,126,64,26,136,208,243,232,164 :':"em 106 
1080 DATA 251,136,208,230,162,0,134,89,160,0,142 :rem 44 
1090 DATA 198,2,140,199,2,138,10,10,24,109,199 :rem 219 
1100 DATA 2,133,87,32,243,29,101,87,133,251,10 :rem 198 
1110 DATA 170,32,101,23,173,200,2,24,109,198,2 :rem 188 
1120 DATA 170,173,201,2,109,199,2,168,32,170,23 :rem 254 
1130 DATA 160,0,166,251,165,146,197,158,208,6,165 :rem 117 
1140 DATA 147,197,159,240,30,177,158,56,229,196,201 :rem 229 
1150 DATA 76,144,21,201,88,176,17,189,180,3,145 :rem 19 
1160 DATA 158,165,159,24,105,120,133,159,189,0,148 :rem 167 
1170 DATA 145,158,177,146,133,195,72,165,147,24,105 :rem 224 
1180 DATA 120,133,92,177,91,168,104,201,76,144,19 :rem 113 
1190 DATA 176,8,255,255,255,255,255,255,255,255,233 :rem 235 
1200 DATA 76,170,189,180,3,188,0,148,201,32,240 :rem 4 

103 



I Sound 
and Graphics 

121O DATA 6,174,252,3,157,25O,2,166,251,157,18O :rem 5 
122O DATA 3,152,157,O,148,16O,O,177,146,56,233 :rem 208 
123O DATA 76,197,251,144,2O,189,18O,3,133,195,174 :rem 121 
1240 DATA 252,3,189,238,2,204,234,2,24O,2,9 :rem 56 
125O DATA 8,145,91,169,23,141,114,29,165,195,201 :rem 64 
1260 DATA 76,144,13,201,88,176,3,141,244,2,174 :rem 215 
127O DATA 252,3,157,244,2,56,238,114,29,233,32 :rem 215 
1280 DATA 48,4,133,195,16,244,184,165,195,1O,1O :rem 14 
129O DATA 1O,141,113,29,185,O,25,17,89,145,89 :rem 174 
13OO DATA 2OO,192,8,208,244,16O,O,165,87,24,1O5 :rem 254 
131O DATA 64,145,146,165,251,1O,17O,165,146,157,6O :rem 157 
132O DATA 3,165,147,157,61,3,165,89,24,105,8 :rem 123 
133O DATA 133,89,174,198,2,172,199,2,2OO,192,4 :rem 226 
134O DATA 24O,3,76,143,28,232,224,3,24O,3,76 :rem 106 
1350 DATA 141,28,16O,95,185,O,26,145,176,136,16 :rem 15 
1360 DATA 248,32,243,29,10,17O,169,76,24,101,196 : rem 65 
137O DATA 168,105,12,133,195,152,72,32,1O1,23,16O : rem 95 
1380 DATA O,104,145,158,168,2O0,232,232,196,195,2O8 :rem 211 
1390 DATA 238,96,16O,O,14O,252,3,185,228,2,133 :rem 214 
1400 DATA 191,32,224,27,172,252,3,2OO,192,4,208 :rem 25O 
141O DATA 237,24,96,173,255,2,1O,133,196,1O,24 :rem 209 
142O DATA 101,196,133,196,96 :rem 105 

Program 2. Sprite Demo 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

5 POKE56,22:POKE52,22:POKE55,32:POKE51,32 :rem 131 
10 FORI=5664T05711:READA:POKEI,A:NEXT :rem 67 
20 DATA0,0,3,15,31,5S,113,112,248,248,252,223,255,255,254,254 

,254,127,127,62,29,15,3,O :rem 165 
30 DATA0,0,192,240,248,236,158,142,15,31,31,111,191,15,7,7,7, 

14,30,124,248,240,192,O :rem 55 
40 POKE720,118:POKE750,6:POKE725,I:POKE36879,14:LET4::rem 128 
45 FORI=0T050:A=INT(RND(I)*505):POKE7680+1I,.,46:POKE38400+A,INT 

(.RtW(I)*6)+I:NEXT :rem 67 
48 POKE7910,42:POKE38630,7 :rem 206 
50 FORI=0T06.28STEP.06:X=060*COS(I)+107:Y=050*SIN(I)+107:LET@ 

0,X,Y:£:NEXT:GOT050 :rem 105 

104 



T~7org~: I VIC Draw McGraw 

"VIC Draw McGraw" can be used to easily create graphic pictures on your 
8K expanded VIC. With it, you can quickly design characters and figures to 
suit almost any need. You can even use it to draw hi-res pictures on the 
screen. 

Once you've typed in and saved VIC Draw McGraw, make sure you 
have an 8K expander cartridge plugged into the port at the back of your 
computer. Load the program, run it, and you'll see a 14-item menu screen: 

1 Move Cursor 
2 Print Character 
3 Rotate Cursor Character 
4 Change Character Size 
5 Image to Printer 
6 Use Programmable Characters 
7 Condense Characters 
8 Sa ve to Printer 
9 Save to Tape 

10 Restore from Tape 
11 Draw with Joystick 
12 Erase Mode 
13 Print Mode 
14 Color of the Screen 

Beneath this menu is additional information on the size of the character 
grid you're presently working with, the type of character, the number of the 
character under the cursor, the mode VIC Draw McGraw is in, and the num
ber of characters remaining to you. (All these will be explained shortly.) 

I How It All Works 
Move Cursor. Function 1 from the main menu is probably the most 

widely called function of VIC Draw McGraw. As soon as you hit the 1 key 
and press RETURN (all functions require that you follow the number with 
the RETURN keypress), the screen clears and you'll see a cursor at the top
left corner of the screen. You can move it anywhere simply by using the nor
mal cursor keys. This function is used to position the cursor in the desired 
place, something important for many of the other functions. Hit the RE
TURN key again to go back to the main menu. 

Print Character. When you press the 2 key and hit RETURN, you'll see 
a prompt at the bottom of the menu screen. Enter the screen code (often 
called the POKE code) for the character you want to print at the present 
cursor position on the alternate screen. You'll also be asked if you want the 

105 



Sound 
and Graphics 

reverse mode (answer Y for Yes, N for No), the set number (1 for 
uppercase/graphics, 2 for lowercase/uppercase), and whether you want the 
pixels of the character shifted to the right and down (answer N for No, Y for 
Yes; if the latter, you'll have to provide values for both the right and down 
SHIFTs). When you shift a character's pixels, it still prints, but it won't nec
essarily appear directly beneath the cursor position. You can use this feature 
to print "offset" characters almost anywhere on the screen. 

Rotate Cursor Character. Hitting the 3 key calls this function. Any 
character under the cursor (remember, you can move the cursor by pressing 
the 1 key) can be rotated 90, 180, or 270 degrees. You can make your 
characters, whether standard or those you designed, lie on their sides or 
even stand on their heads. 

Change Character Size. By pressing the 4 key, you can change the 
character size. (This is also used to set the drawing area when you enter the 
Dra",v with Joystick mode.) All that happens is that after entering the width 
and height values, the Size message in the middle box of the main menu 
changes. To actJally draw enlarged characters, however, you'll have to go 
back to the alternate screen and print a character. Try it out. 

Image to Printer. Pressing the 5 key, assuming you have a printer con
nected to your VIC, sends the screen graphics to the printer. The process is 
quite long and takes approximately 55 minutes to run. The results, however, 
are worth the wait. 

Use Programmable Characters. Hitting ~~e 6 key toggles between the 
VIC's standard character set and the programmable characters you've already 
created. You can create your own custom characters by accessing the Draw 
with Joystick mode, drawing a character, and then noting the character num
ber under the cursor (that information is listed in the middle message box on 
the main menu). When you're in the programmable character mode, if you 
try to print a character on the alternate screen, you'll see only two messages: 
Screen Code and Shift. Instead of entering a screen code value, type in the 
character number (the value you see in the message box when the cursor is 
directly over your custom character). 

Condense Characters. This function, called by pressing the 7 key, re
places programmable characters that are all clear or all filled with the 
predefined characters used for the cursor and the background. Use this func
tion with caution and only if you're running out of characters (256 possible 
characters) or space on the screen (256 possible locations). Though it some
times may appear as if nothing but character shifting is happening, the func
tion does free up some screen space when you're cramped. 

Save to Printer and Save to Tape. Pressing either the 8 or 9 key saves 
the character data you've created, sending it either to your printer (assuming 
one is connected) or to your tape drive. When you send the data to the 
printer, you have to specify whether only the character under the cursor is 

106 



Sound 
and Graphics 

recorded or whether the presently selected size is used and all character data 
is printed. The numbers shown on a printout (as well as those sent to tape if 
you select 9) indicate the bit values of each byte. If you send the data to 
tape, you have to provide a filename. 

Restore from Tape. This feature, accessed by entering 10, loads your 
character data from tape back into the computer. Make sure you provide the 
correct filename. 

Draw with Joystick. This is one of the most interesting features of VIC 
Draw McGraw. After setting the character size (by using function 4), you can 
enter 11 and hit RETURN. The alternate screen appears, and you can use a 
joystick to draw on the hi-res screen. Pressing the P, E, or C key while draw
ing changes the function to set Print, Erase, or Change modes. Press the joy
stick button to draw, moving the joystick around the screen. If you choose 
Erase, when you press the button, any point you move over is erased; if you 
choose Change, then printed points are erased and erased points are printed. 
Note that the drawing area is established by the Change Character Size 
function. 

Erase Mode. When you enter 12, having earlier placed the cursor over 
the desired character, you can erase portions of the character by printing 
over it with another character. Use this to clear selected characters from the 
al terna te screen. 

Print Mode. Enter 13 to go back to printing mode. 
Color of the Screen. This allows you to select character colors for any 

character you wish. Simply follow the prompts which appear in the bottom 
of the main menu screen. 

VIC Draw McGraw is a powerful program. With it, you can create al
most any custom characters you want. You can even enlarge the VIC's stan
dard character set and print that. Experiment with the program-you'll 
probably find uses for it I never thought of! 

VIC Draw McGraw 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appelldix C. 

Some lines of this program require keywords to be abbreviated so that they will 110t exceed the !our-screen-line 
limit. See Appendix B. 

1 REM***VICDRAWMCGRAW *************************************** 
**********XXXXXXXX :rem 46 

2 REM******************************************************** 
**********XXXXXXXX :rem 170 

3 REM******************************************************** 
**********XXXXXXXX :rem 171 

4 REM******************************************************** 
**********XXXXXXXX :rem 172 

107 



Sound 
and Graphics 

5 REM******************************************************** 
**********XXXXXXXX :rem 173 

6 REM******************************************************** 
**********XXXXXXXX :rem 174 

7 REM******************************************************** 
**********XXXXXXXX :rem 175 

B REM******************************************************** 
**********XXXXXXXX :rem 176 

9 REM******************************************************** 
**********XXXXXXXX :rem 177 

10 REM******************************************************* 
***********XXXXXXXX :rem 217 

11 REM******************************************************* 
***********XXXXXXXX :rem 21B 

12 REM******************************************************* 
***********XXXXXXXX :rem 219 

13 REM******************************************************* 
***********XXXXXXXX :rem 220 

14 REM******************************************************* 
***********XXXXXXXX :rem 221 

15 REM******************************************************* 
***********XXXXXXXX :rem 222 

16 REM******************************************************* 
***********XXXXXXXX :rem 223 

17 REM******************************************************* 
***********XXXXXXXX :rem 224 

IB REM******************************************************* 
***********XXXXXXXX :rem 225 

19 REM******************************************************* 
***********XXXXXXXX :rem 226 

20 REM***********************************************·******* 
***********XXXXXXXX :rem 21B 

21 REM******************************************************* 
***********XXXXXXXX :rem 219 

22 REM******************************************************* 
***********XXXXXXXX :rem 220 

23 REM******************************************************* 
***********XXXXXXXX :rem 221 

24 REM******************************************************* 
***********XXXXXXXX :rem 222 

25 REM******************************************************* 
***********XXXXXXXX :rem 223 

26 REM******************************************************* 
***********XXXXXXXX :rem 224 

27 REM******************************************************* 
***********XXXXXXXX :rem 225 

2B REM******************************************************* 
***********XXXXXXXX :rem 226 

29 REM******************************************************* 
***********XXXXXXXX :rem 227 

108 



Sound 
and Graphics 

30 REM******************************************************* 
***********xxxxxxxx :rem 219 

31 REM******************************************************* 
***********XXXXXXXX :rem 220 

32 REM******************************************************* 
***********xxxxxxxx :rem 221 

33 IFPEEK(833)=31THENPOKE833,32:GOT046 :rem 20 
42 POKE36879, 92: PRINT" {CLR}": TAB ( 158) :" {BLK} VI CDRAWMCG RAW " : PR 

INTTAB ( 27 ) : " {5 DOHN} PLEASE WAIT" : rem 215 
43 POKE5114,2:FORX=16301T016379:READA:POKEX,A:NEXT:POKE55,173 

:POKE56,63 :rem 94 
44 POKE44,28:FORX=5120T07167:POKEX,0:NEXT:FORX=5128T05135:POK 

EX,255:NEXT:DIMS(7) :rem 9 
45 GOSUB96:PRINT"{CLR}{BLU}"::FORX=lT0505:PRINT"@": :NEXT:POKE 

5113,0:POKE38905,6:GOSUB96 :rem 255 
46 MD$="PRINT":DM$="P":CH$="STAND":CL=254:A=4608:D=PEEK(A):PO 

KEA,1:K=0:J=1:WI=1:TL=1 :rem 233 
47 C=PEEK( 5114) :HC$="PROGRAM." :POKE649, 1 :GOT070 : rem 31 
48 PRINT" {CLR} {BLK} 1 {2 SPACES }MOVE CURSOR": PRINT" {WHT} 2 

{2 SPACES}PRINT CHARACTER" :PRINT" {BLK} 3 {2 SPACES} ROTATE CU 
RSOR CHAR" : rem 155 

51 PRINT"{WHT}4{2 SPACES}CHANGE CHAR. SIZE":PRINT"{BLK}5 
{2 SPACES}IMAGE TO PRINTER" :rem 151 

52 PRINT"{WHT}6{2 SPACES}USE ":HC$:" CHAR." :rem 21 
54 PRINT" {BLK} 7 {2 SPACES }CONDENSE CHARACTERS":: PRINT" {WHT} 8 

{2 SPACES}SAVE TO PRINTER":PRINT"{BLK}9{2 SPACES}SAVE TO T 
APE" :rem 121 

55 PRINT" {HHT} 10 RESTORE FROM TAPE" : rem 35 
56 PRINT"{BLK}ll DRAW WITH JOYSTICK":PRINT"{WHT}l2 ERASE MODE 

":PRINT"{BLK}13 PRINT MODE" :rem 193 
57 PRINT"{WHT}l4 COLOR THE SCREEN":PRINT"{PUR}{RVS} 

{22 SPACES}{BLK}": :rem 75 
58 WI $=MID$ (STR$ (WI), 2,2) :IFHI< 10THENHI$="0"HlI$ : rem 32 
59 TL$=MID$(STR$(TL),2,2):IFTL<10THENTL$="0"+TL$ :rem 33 
60 PRINT" {OFF} {BLK}SIZE=" :WI$: "X" :TL$:" {2 SPACES }MODE=": MD$: 

:rem 178 
62 CL$=MID$(STR$(CL),2,3) :rem 97 
63 PRINT"CHAR=":CH$:"{2 SPACES}# LEFT=":CL$::PRINT"{HOME}":TA 

B(200):TAB(176):"CHAR UNDER CURSOR=": :rem 55 
64 PRINTMID$(STR$(D),2,3) :rem 181 
66 PRINT"{RVS}{PUR}{22 SPACES}{OFF}{BLK}": : RETURN :rem 98 
70 GOSUB48:PRINT"FUNCTION? "::GOSUB75:FU=VAL(A$) :IF(FU<l)OR(F 

U>255)THEN70 :rem 46 
73 ONFUGOSUB100,200,300,400,500,600,700,800,900,1000,1100,120 

0,1300,1400 :rem 106 
74 ONSDGOSUB96:GOT070 :rem 104 
75 A$="" :rem 82 
76 GETB$:IFB$=""THEN76 :rem 255 
77 IFB$=CHR$(13)THENPRINT" ":RETURN :rem 112 
78 IFB$=CHR$ (20) THENA$=" DEL": PRINT" ": RETURN : rem 100 

109 

J 



Sound 
and Graphics 

79 IFB$<"0"ORB$>"9"THEN76 :rem 115 
80 A$=A$+B$:PRINTB$;:IFLEN(A$»2THENPRINT" ":RETURN :rem 80 
81 GOT076 : rem 15 
83 FORX=lTOTL-(SD%>0):FORY=lTO\¥I-(SR%>0):LU=PEEK(A+Y+22*X-23) 

:rem 218 
84 IFLU<2ANDCL=0THENONSDGOSUB96:GOSUB48:PRINT"CHARACTERS EXHA 

USTED":PRINT"USE CONDENSE":A$="R":RETURN :rem 186 
85 IFLU=lTHENFORXl=0T07:POKE5120+8*C+Xl,255:NEXT :rem 231 
86 IFLU<2THENPOKEA+Y+22*X-23,C:C=C+l :rem 154 
87 CL=256-C:NEXT:NEXT:RETURN :rem 84 
95 FORX=0T07:S(X)=0:NEXT:RETURN :rem 42 
96 IFSD=0THENSD=1:POKE36866,PEEK(36866)OR128:POKE648,18:POKE3 

6879,27:POKE36869,205:RETURN :rem 156 
97 SD=0:POKE36866,PEEK(36866)AND127:POKE648,16:POKE36879,92:P 

OKE36869,192:RETURN :rem 16 
100 GOSUB96 :rem 128 
101 GETA$:IFA$=""THEN101 :rem 71 
105 IFA$=CHR$(13)THENGOSUB96:RETURN :rem 181 
110 ON- (A$=" {RIGHT}" ) -2* (A$=" {DOWN}" ) -3 * (A$=" {LEFT}" ) -4* (A$=" 

(UP}")GOTOl15,120,125,130 :rem 69 
III IF«VAL(A$»0)AND(VAL(A$)<9»THENPOKEA+33792,VAL(A$)-1:GO 

T0101 :rem 247 
112 IF«ASC(A$»32)AND(ASC(A$)<41»THENPOKEA+33792,ASC(A$)-25 

:rem 102 
113 GOT0101 :rem 96 
115 POKEA,D:A=A-(A<5113):GOT0135 :rem 65 
120 POKEA,D:A=A-22*(A<5092):GOT0135 :rem 209 
125 POKEA,D:A=A+(A>4608):GOT0135 :rem 74 
130 POKEA,D:A=A+22*(A>4629) :rem 203 
135 D=PEEK(A) :POKEA, 1 :GOT0101 : rem 221 
200 GOSUB48:PRINT"SCREEN CODE? ";:GOSUB75:IFA$="DEL"ORA$=""TH 

EN200 :rem 208 
205 SC%=VAL(A$):IF(SC%<0)OR(SC%>255)THEN200 :rem 177 
206 IF(CH$="PROG.")OR(SC%>127)THENSN%=1:GOT0215 :rem 1 
207 GOSUB48:PRINT"WANT RVS ON?" :rem 161 
208 GETA$:ON-(A$="")GOT0208:IFA$="Y"THENSC%=SC%+128 :rem 157 
210 GOSUB48:PRINT"SET NUMBER? "; :GOSUB75:SN%=VAL(A$) :IF(SN%<l 

)OR(SN%>2)THEN210 :rem 236 
215 GOSUB48 :PRINT"SHIFT?" : rem 76 
220 GETA$:ON-(A$="")GOT0220:IFA$<>"Y"THENSR%=0:SD%=0:GOT0239 

: rem 0 
225 GOSUB48 :PRINT"PIXELS TO RIGHT?" : rem 197 
230 GETA$:ON-«A$<"0")OR(A$>"7"»GOT0230:SR%=VAL(A$) :rem 77 
231 GOSUB48:PRINT"PIXELS DOWN?" :rem 217 
232 GETA$:ON-«A$<"0")OR(A$>"7"»GOT0232:SD%=VAL(A$) :rem 67 
239 GOSUB96:POKEA,D :rem 167 
240 GOSUB83 :IFA$="R"THENRETURN : rem 145 
270 FORX=0T07:FORY=0T07 :rem 224 
275 IF«2t(7-Y»AND(PEEK(32768*J+5120*K+(SN%-1)*2048+SC%*8+X) 

»>0THENGOSUB283 :rem 10 

110 



Sound 
and Graphics 

280 NEXT:NEXT:D=PEEK(A):FORX=lT03000:NEXT:POKEA,1:RETURN 
:rem 171 

283 FORX1=lTOTL:FORY1=lTOWI:X2=Y*WI+SR%+Y1-1:X3=X*TL+SD%+X1-1 
:rem 99 

285 X4=A+INT(X2/8)+22*INT(X3/8) :rem 232 
287 X5=PEEK(X4)*8+5120+X3-8*INT(X3/8) :rem 53 
289 IFDM$="P"THENPOKEX5,PEEK(X5)OR2t(7-(X2-(INT(X2/8)*8»):GO 

T0299 :rem 183 
291 POKEX5,PEEK(X5)AND(255-2t(7-X2+(INT(X2/8)*8») :rem 78 
299 NEXT:NEXT:RETURN :rem 118 
300 GOSUB48:PRINT"PICK: (1) 90{2 SPACES}DEG-CW":PRINTTAB(6);" 

(2) 180 DEG-CW":PRINTTAB(6);"(3) 270 DEG-CW" :rem 28 
305 GETA$:IFA$<"1"ORA$>"3"THEN305 :rem 62 
310 GOSUB95:X=VAL(A$):GOSUB96:POKEA,D:ONXGOSUB320,350,360:FOR 

X=lT03000:NEXT:POKEA,1:RETURN :rem 225 
320 FORX1=7T00STEP-1:FORX3=0T07 :rem 217 
330 IF(PEEK(5120+D*8+X3)AND2tX1»0THENS(7-X1)=S(7-X1)+2tX3 

:rem 105 
340 NEXT:NEXT:FORX1=0T07:POKE5120+D*8+X1,S(X1) :NEXT:RETURN 

:rem 226 
350 FORX4=lT02:GOSUB320:GOSUB95:NEXT:RETURN :rem 88 
360 FORX4=lT03:GOSUB320:GOSUB95:NEXT:RETURN :rem 90 
400 GOSUB48:PRINT"WIDTH? "; :GOSUB75:WI=VAL(A$) :GOSUB48:PRINT" 

HEIGHT? ";:GOSUB75:TL=VAL(A$) :rem 149 
410 IF(TL>23)OR(WI>22)OR(TL<1)OR(WI<1)THEN400 :rem 173 
430 RETURN : rem 119 
500 GOSUB48:PRINT"IS PRINTER READY?":PRINT"IF SO HIT ANY KEY" 

:rem 242 
501 GETA$: ON- (A$="" )GOT0501 :GOSUB48: PRINT" ... WORKING": rem 193 
502 I1=4608:I2=5120:POKEA,D:OPEN4,4 :rem 244 
503 Zl=0:Z2=25:Z3=6:GOSUB510:Z1=26:Z2=26:Z3=1:GOSUB510 

:rem 222 
505 POKE~,1:CLOSE4;F~TUFN ~rem 101 
510 FORX=ZlTOZ2:B$=CHR$(8)+CHR$(27)+CHR$(16)+CHR$(0)+CHR$(153 

) : rem 192 
515 FORX1=0T0175:CN=128:FORX2=0TOZ3 :rem 163 
520 Y1=I1+INT«X*7+X2)/8)*22+INT(X1/8):Y2=I2+PEEK(Y1)*8+X*7+X 

2-8*INT«X*7+X2)/8) :rem 222 
525 IF(PEEK(Y2)AND2t(7-(Xl-8*INT(X1/8»»THENCN=CN+2tX2 

:rem 253 
530 NEXT:B$=B$+CHR$(CN):NEXT:PRINT#4,B$:NEXT:RETURN :rem 228 
600 IFHC$=" PROGRAM. "THENHC$=" STANDARD": J=0: K=l : CH$=" PROG . ": RE 

TURN :rem 25 
601 HC$="PROGRAM.":J=1:K=0:CH$="STAND":RETURN :rem 239 
700 GOSUB96:Z=0:POKEA,D:CE=0:IFC=2THENPOKEA,1:RETURN :rem 97 
705 FORX=2TOC-1:FORY=0T07:XS=5120+8*X+Y:POKEXS,PEEK(XS+8*CE): 

NEXT:FORY=0T07 :rem 82 
707 Z=Z+PEEK(5120+8*X+Y):NEXT :rem 218 
710 IFZ=00RZ=2040THENGOSUB760 :rem 56 
715 IF(X+CE)=(C-1)THENLU=X:X=C-1 :rem 140 

111 



Sound 
and Graphics 

716 Z=0:NEXT :rem 222 
720 CH=C-l:C=LU+l :rem 185 
725 FORX=CTOCH:FORY=0T07:POKE5120+8*X+Y,0:NEXT:NEXT:D=PEEK(A) 

:POKEA,1:CL=256-C:RETURN :rem 218 
760 POKE16347,-(Z=2040):POKE16304,X:SYS16301 :rem 247 
770 CE=CE+l:X=X-l:RETURN :rem 230 
800 GOSUB48:PRINT"IS PRINTER READY?":PRINT"IF SO HIT ANY KEY" 

:rem 245 
801 GETA$:IFA$=""THEN801 :rem 85 
803 GOSUB48: PRINT" PICK: ( 1) CURSOR CHAR": PRI NTTAB ( 5) ; " ( 2) SI ZE 

AS ABOVE":PRINTTAB(5) ;"{UP}START AT CURSOR" :rem 8 
804 OPEN4,4 :rem 98 
805 GETA$:ON-(A$<"1")-(A$>"2")GOT0805:0NVAL(A$)GOSUB810,820:C 

LOSE4:RETURN :rem 7 
810 PRINT#4,CHR$( 14) "CURSOR CHARACTER:" :PRINT#4,CHR$( 15) 

:rem 75 
812 FORX=5120+D*8T05127+D*8:PRINT#4,PEEK(X); :NEXT :rem 191 
813 PRINT#4:PRINT#4,"COLOR MEMORY=";PEEK(A+33792)AND15 :rem 1 
814 'PRINT#4, "AUXILIARY COLOR=";INT(PEEK(36878)/16) : RETURN 

:rem 18 
820 POKEA,D:PRINT#4,CHR$(l4)"CURSOR IN UPPER LEFT HAND CORNER 

":PRINT#4,"OF A SQUARE";HI; :rem 26 
821 PRINT#4,"X";TL;:PRINT#4,"(WIDTH X HEIGHT)":FORX=lTOTL:PRI 

NT#4,CHR$(15)"ROW #";X :rem 235 
824 FORY=lTOWI:PRINT#4,"CHARACTER #";Y;"-"; :rem 72 
825 FORZ=0T07:PRINT#4,PEEK(5120+Z+8*PEEK(A+Y-l+22*(X-l») ;:NE 

XT:PRINT#4,"***":NEXT:NEXT :rem 204 
830 PRINT#4:PRINT#4,"COLOR MEMORY":FORX=ITOTL:PRINT#4,"ROW #" 

;X:FORY=lTOWI :rem 246 
832 PRINT#4, "CHARACTER #" ;Y; "-"; :rem 28 
835 PRINT#4,PEEK(A+33792+Y-l+(X-l)*22)ANDI5:NEXT:NEXT:rem 103 
840 POKEA,1:PRINT#4,"AUXILIARY COLOR=";INT(PEEK(36878)/16):RE 

TURN :rem 24 
900 GOSUB48:PRINT"FILENAME? ";:I3$='''':FORX=0T0254 :rem 144 
905 GETA$:IFA$=""THEN905 :rem 95 
910 IFA$=CHR$(13)THENX=254:GOT0920 :rem 238 
915 B$=B$+A$:PRINTA$; :rem 159 
920 NEXT:POKEA,D:POKE5114,C:GOSUB48:PRINT"IS PROPER TAPE IN?" 

:PRINT"IF SO HIT ANY KEY" :rem 46 
922 GETA$:IFA$=""THEN922 :rem 93 
923 GOSUB48:0PENl,1,1,B$:FORX=38400T038905:PRINT#I,PEEK(X)AND 

15:NEXT :rem 155 
924 PRINT#1,INT«PEEK(36878»/16):CLOSEl :rem 54 
925 POKE5115,PEEK(45):POKE5116,PEEK(46):POKE43,0:POKE44,18:PO 

KE45,0:POKE46,28:SAVECHR$(31),1,1 :rem 234 
935 POKE833,32:POKE43,1:POKE44,28:POKE45,PEEK(5115) :POKE46,PE 

EK(5116) :rem 21 
940 POKEA,l:RETURN :rem 132 
1000 GOSUB48:PRINT"FILENAME? ";:B$=""IFORX=0T0254 Irem 184 
1005 GETA$: IFA$=''''THEN1005 : rem 175 
1010 IFA$=CHR$(13)THENX=254:GOTOI020 :rem 62 

112 



--~~~--~----------------------

Sound 
and Graphics 

1015 B$=B$+A$:PRINTA$~ :rem 199 
H!20 NEXT:GOSUB48:PRINT"IS PROPER TAPE IN?":PRINT"IF SO HIT A 

NY KEY" : rem 153 
1022 GETA$ :IFA$=''''THEN1022 : rem 173 
1023 GOSUB48:0PENl,1,0,B$:FORX=38400T038905:INPUT#1,CO:POKEX, 

CO:NEXT:INPUTtl,CO :rem 171 
1024 POKE36878, PEEK ( 36878 )AND150R( 16*CO) :CLOSEI : LOADCHR$ (31) : 

RETURN :rem 17 
1100 GOSUB48:PRINT"HIT P, E OR C TO SET{2 SPACES}PRINT, ERASE 

OR CHANGEMODES":FORX=lT02000:NEXT :rem 127 
1105 B$="C ": SD%=0 :SR%=0:POKEA, D: GOSUB83: I FA$="R "THEND=PEEK(A) 

:POKEA,l:RETURN :rem 141 
1110 CX=1:CY=1:0NSD+IGOSUB96 :rem 201 
1120 GETA$:IFA$=CHR$(13)THEND=PEEK(A):POKEA,1:RETURN :rem 178 
1122 IF(A$="P")OR(A$="E")OR(A$="C")THENB$=A$ :rem 75 
1125 POKE37154,127:0N(PEEK(3713~)AND32)+lGOSUBl150 :rem 64 
1130 Al=(PEEK(37137)AND28)OR(PEEK(37152)AND12R) :Al=ABS«Al-10 

0)/4)-7 :rem 173 
1135 ONAIGOTOl136,1137,1138"1139,1140,1144,,,,1141,1142,1143 

:rem 60 
1136 CX=CX+(CX>1):CY=CY-(CY<8*TL):GOTOl144 :rem 8 
1137 CX=CX+(CX>l) :CY=CY+(CY>l) :GOT01l44 :rem 56 
1138 CX=CX+(CX>1):GOTOl144 :rem 3 
1139 CY=CY-(CY<8*TL):GOTOl144 :rem 216 
1140 CY=CY+(CY>1):GOTOl144 :rem 255 
1141 CX=CX-(CX<8*WI):GOTOl144 :rem 206 
1142 CX=CX-(CX<8*WI):CY=CY+(CY>1):GOTOl144 :rem 5 
1143 CX=CX-(CX<8*WI):CY=CY-(CY<8*TL) :rem 154 
1144 POKE37154,255:GOTOl120 :rem 252 
1150 X2=CX-l:X3=CY-l :rem 131 
1151 X4=A+INT(X2/8)+22*INT(X3/8):X5=PEEK(X4)*8+5120+X3-8*INT( 

X3/8) :rem 223 
1152 ON-(B$="P I )-2*(B$="E")GOTOl154,1156 :rem 30 
1153 IF(PEEK(X5)AND(2t(7-(X2-(INT(X2/8)*8»»»0THENl156 

: rem HJ4 
1154 POKEX5,PEEK(X5)OR2t(7-(X2-(INT(X2/8)*8»):RETURN:rem 158 
1156 POKEX5,PEEK(X5)AND(255-(2t(7-(X2-(INT(X2/8)*8»»):RETUR 

N :rem 61 
1200 MD$="ERASE":DM$="E":RETURN :rem 56 
1300 MD$="PRINT":DM$="P":RETURN :rem 97 
1400 GOSUB48 :rem 177 
1410 PRINT"HIT COLOR KEYS TO SET COLOR. HIT {RVS}SHIFT{OFF} T 

HEN COLOR KEY TO SET MULTI-COLOR MODE."; : rem 101 
1415 FORX=lT06000:NEXT :rem 90 
1420 GOSUB48:PRINT"ENTER A NUMBER FROM 0 TO 15 TO SET AUX COL 

OR"~ :rem 234 
1430 GOSUB75:0N-(A$="DEL")GOT01420:POKE36878,PEEK(36878)AND15 

OR(16*VAL(A$» :rem 68 
1499 GOSUB100:RETURN :rem 2 
30000 DATA162,0,169,170,221,0,18,240,36,144,42,224,255,208,26 

,169,19,205,179,63,240,42 :rem 179 

113 



Sound 
and Graphics 

30001 DATA162,0,169,19,141,179,63,141,222,63,141,228,63,141,2 
33,63,76,175,63,232,76,175 :rern 248 

30002 DATA63,169,170,157,0,18,76,184,63,188,0,18,136,152,157, 
0,18,76,184,63,169,18,141 :rern 213 

30003 DATA179,63,141,222,63,141,228,63,141,233,63,96 :rern 52 

114 



Griffin I. I 
Johnson 

Music Mate 
Have you wanted to include music in your programs but found it too time
consuming and tedious to determine the frequency number and duration re
quired for each note? "Music Mate" is a program that enables the user to 
program a tune with a minimum of time and effort through the use of visual 
prompts rather than with coded numbers. REMark statements have been 
omitted from the program to allow the maximum number of notes to be 
entered. 

Once the first part of the program is loaded and run, the custom charac
ters required for the main program are ready and Part 2 will be automatically 
loaded. Be sure to save both Program 1 and Program 2 before running either. 
Disk users should save Program 2 with the filename MATE. Tape users 
should delete lines 40000 to 40030 in Program 1 and add this line: 
40000 POKE 198,5:POKE631,78:POKE632,69:POKE633,87:POKE634,13:POKE635,131 

Be sure to save Program 2 on the same tape immediately following Program 1. 

I Writing Music 
The program prompts the user to enter the total number of notes and rests 
for the tune up to a maximum of 60. Instructions for using the program are 
printed on the screen until any key is hit. Then, three columns of input 
choices are printed on the screen, including a message at the bottom of the 
screen indicating the note currently being entered. 

The first column shows note and rest choices, for example, quarter note, 
half note, quarter rest, and so on. The second column is a small section of 
staff lines representing the treble clef from B-flat below middle C to two oc
taves above. The third column has only three choices-whether the note is 
natural, sharp, or flat. 

The Music Mate program automatically positions the cursor to the left of 
the first column. Using the cursor up/down key, you can position the cursor 
to the left of the note or rest to be selected. You enter the note or rest dura
tion by hitting the Z key. The one exception to this is a dotted note. For a 
dotted note you should position the cursor up one space and hit the Z key to 
enter the dot before entering the note. Also, at the bottom of the first column 
is the letter R. Choose R if you make a mistake in entering a note. To return 
to the note for correction, position the cursor to the left of the R and hit the 
Z key. This may be done repeatedly to return to any note. 

The cursor them moves to the second column if a note was entered in 
the first column. Position the cursor to the line or space for each note by 
using the cursor up/down key. The program offers a two-octave range from 
B-flat below middle C to B above the staff. Hitting the Z key enters the note 

115 



Sound 
and Graphics 

and moves the cursor to the third column. In this column the cursor is po
sitioned opposite the natural sign and must be moved up or down to select 
flat or sharp. Again, hitting the Z key enters the choice. 

The above process is repeated for each note or rest. When all notes and 
rests have been entered, the program prompts with, "Do you want the music 
played? (YIN)." If the choice is Y, the music is played as many times as de
sired. If the choice is N, the program prompts with, "Do you want the 
BASIC statements? (YIN)." Entering Y prints the BASIC statements and 
DATA statements for the music which has been entered. These may then be 
copied to add music to your own programs. 

Program 1. Music Mate 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 REM PART ONE OF T\fO PART PROGRAM : rem 60 
20 PRINT"{CLR} MUSIC MATE" :rem 110 
20000 POKE56,28:POKE52,28:POKE51,0:POKE55,0:CLR :rem 253 
20010 Ml=7168:CS=32768 :rem 155 
20020 FORI=MITOMI+511:POKEI,PEEK(I+CS-MI) :NEXT :rem 68 
20050 READX: IFX<0THEN20080 : rem 33 
20060 FORI=XTOX+7:READJ:POKEI,J:NEXT :rem 91 
20070 GOT020050 :rem 41 
20080 DATA7384,32,32,44,52,36,40,48,32 :rem 129 
20090 DATA7392,32,40,56,40,56,40,8,0 :rem 25 
20100 DATA7400,36,36,126,36,126,36,36,0 :rem 167 
20110 DATA7408,12,10,13,10,57,120,120,48 :rem 200 
20120 DATA7416,8,12,10,9,56,120,120,48 :rem 115 
20130 DATA7432,8,8,8,8,56,120,120,48 :rem 29 
20140 DATA7440,8,8,8,8,56,72,72,48 :rem 201 
20150 DATA7448,0,0,0,0,48,72,72,48 :rem 179 
20160 DATA7456,0,0,0,60,60,255,0,0 :rem 161 
20170 DATA7464,2,6,58,122,50,2,2,2 :rem 174 
20180 DATA7472,0,0,255,60,60,0,0,0 :rem 161 
20190 DATA7480,16,24,60,48,24,60,48,24 :rem 134 
20200 DATA7528,0,0,0,255,0,0,0,0 :rem 48 
20205 DATA7504,0,0,0,32,0,0,0,0 :rem 248 
20210 DATA7648,0,252,254,255,254,252,0,0 :rem 220 
20220 DATA-l :rem 110 
40000 POKEI98,5:POKE631,78:POKE632,69:POKE633,87:POKE634,13:P 

OKE635,13 :rem 48 
40005 POKE 36879,8: PRINT" {CLR J fYEL J PLEASE HAlT ... f BLK J " 

:rem 226 
40010 PRINT" f 5 DOWN J P0198, 1 :P0631, 13 :LOAD": CHR$ (34) : "MATE": CH 

R$(34):",8" - - :rem 135 
40020 PRINT "{4 DOWN}RUN" :rem 0 
40030 PRINT" {HOME J ": END : rem 236 

116 



Program 2. Mate 

Sound I 
and Graphics 

For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 POKE36869,255:CLR :rem 83 
5 DIMN%(36),T%(60),NM%(60) :rem 59 
7 Z=0:X=0:S1=36876:TT%=400:M1=7168:CS=32768:L=1:SM=7680:V=368 

78 :rem 125 
10 FORI=lT036:READN%(I) :NEXT:POKE36879,110 :rem 31 
15 PRINT" {CLR}(WHT}ENTER NUMBER OF NOTES {DOWN}AND RESTS. 

{2 SPACES} (MAX.60)(2 SPACES}{Dmm}":INPUTA :rem 190 
20 PRINT" {CLR}TO ENTER EACH NOTE OR {OOWN}REST MOVE CURSOR UP 

OR { OO\m} OOHN AND HIT Z." : rem 2 
25 PRINT:PRINT"RESTS REQUIRE ONLY ONE{ DOvVN} INPUT AND NOTES TH 

REE {OOHN} INPUTS. ENTER R TO{4 SPACES}" :rem 219 
30 PRINT"REPEAT PREVIOUS NOTE. ":PRINT :rem 157 
31 PRINT:PRINT"{YEL}{5 RIGHT}HIT ANY KEY{WHT}" :rem 230 
32 GETS$:IFS$=""THEN32RUN :rem 6 
35 GOSUB1000 :rem 169 
40 Z=Z+l:PRINT"{HOME}"TAB(255);TAB(158):"NOTE NUMBER "z 

:rem 108 
50 B=90:G=1 :rem 60 
55 GOSUB2000 :rem 172 
60 X=INT«B+R)/22)-3:IFX=0THENG=1.5 :rem 15 
65 IFX<10RX>10THEN55 :rem 240 
70 ONXGOT0100,110,120,130,140,150,160,170,180,185 :rem 252 
100 T%(Z)=96/G:GOT0200 :rem 220 
110 T%(Z)=48/G:GOT0200 :rem 218 
120 T%(Z)=24/G:GOT0200 :rem 213 
130 T%(Z)=12/G:GOT0200 :rem 211 
140 T%(Z)=6/G:GOT0200 :rem 167 
150 T%(Z)=48:GOT0190 :rem 112 
160 T%(Z)=24:GOT0190 :rem 107 
170 T%(Z)=12:GOT0190 :rem 105 
180 T%(Z)=6:GOT0190 :rem 61 
185 Z=Z-2:GOT040 :rem 197 
190 NM%(Z)=0:GOT0420 :rem 123 
200 B=162:GOSUB2000 :rem 38 
220 X=INT«B+R)/22):IFX<10RX>16THEN200 :rem 245 
230 B=170:GOSUB2000 :rem 40 
250 Y=INT«B+R)/22)-7:IFY<-10RY>lTHEN230 :rem 89 
260 ONXGOT0270,~80,290,300,310,320,330,340,350,360 ,370,3~,39 

0,400,410,415 :rem 214 
270 NM%(Z)=N%(1+Y):GOT0420 :rem 195 
280 NM% (Z )=N% ( 4+ Y) :GOT0420 : rem 199 
290 NM%(Z)=N%(7+Y):GOT0420 :rem 203 
300 NM%(Z)=N%(10+Y):GOT0420 :rem 237 
310 NM%(Z)=N%(11+Y):GOT0420 :rem 239 
320 NM%(Z)=N%(14+Y):GOT0420 :rem 243 
330 NM%(Z)=N%(17+Y):GOT0420 :rem 247 
340 NM%(Z)=N%(18+Y) :GOT0420 :rem 249 
350 NM%(Z)=N%(21+Y):GOT0420 :rem 244 

117 



Sound 
and Graphics 

36111 NM% (Z )=N% (24+Y) IGOT0420 : rem 248 
37111 NM%(Z)=N%(27+Y):GOT0420 :rem 252 
380 NM% (Z )=N% (28+Y) :GOT0420 : rem 254 
39111 NM%(Z)=N%(31+Y):GOT0420 :rem 249 
41110 NM%(Z)=N%(34+Y):GOT0420 :rem 244 
41111 NM%(Z)=N%(35+Y):GOT0420 :rem 246 
42111 IFZ=ATHEN45111 :rem 197 
43111 GOT04111 :rem 52 
45111 PRINT" {CLR}DO YOU WANT THE MUSIC PLAYED (YjN) " : rem 15 
46111 GETS$:IFS$='"'THEN460 :rem 123 
465 IFS$<>"N"ANDS$<> "Y"GOT046111 :rem 229 
47111 IFS$="N"THEN59111 :rem 61 
475 POKEV,15 :rem 183 
48111 FORI=lTOA:POKESl,NM%(I) :rem 145 
490 FORDT=lT024*TT%jT%(I):NEXTDT:POKESl,0:NEXTI :rem 232 
495 POKEV,I1I:POKESl,0:GOT0450 :rem 216 
59111 PRINTu{CLR}DO YOU WANT THE BASIC STATEMENTS(YjN)?" 

:rem 125 
6111111 GETS$:IFS$=""THEN600 :rem 115 
61111 IFS$<>"N"ANDS$<>"Y"THEN600 :rem 207 
615 C=11:B=INT(Ajll+.95) :rem 12 
620 IFS$="N"THENEND :rem 115 
625 PRINT"2000POKE36878,15" :rem 1 
626 PRINT"21111I11S1=36876" :rem 1 
63111 PRINT"215I11T="TT% : rem 144 
64111 PRINT"2200FORI=lTO"A":READD,N" :rem 9 
66111 PRINT" 23111111POKESl ,N" : rem 95 
670 PRINT "240I11FORDT=1 T024*T jD" : rem 27 
675 PRINT"25111I11NEXTDT:POSl,0" :rem 74 
68111 PRINT"2600NEXTI:P036878,11I" :rem 132 
685 FORK=lTOB:L=l+(K-l)*II:READLN$ :rem 225 
69111 IFK=BTHENC=A-(B-l)*11 :rem 146 
695 PRINT:PRINTLN$; "DATA"; : FORI=LTOL-l+C: PRINTT% ( I)" {LEFT}, " ; 

NM% (I)" {LEFT}, "; :NEXTI :PRINT" {LEFT} ": : rem 16111 
70111 PRINT" {YEL}{ 5 RIGHT }HIT A KEY{ WHT}" : rem 171 
710 GETS$:IFS$=""THEN710 :rem 119 
72111 NEXTK :rem 35 
75111 POKE36869,240:END :rem 174 
9111111 DATA239,238,238,237,236,236,235,233,233,232,231,229,229,2 

28,227,227 :rem 244 
91111 DATA225,223,221,221,219,217,217,215,212,212,21119,21117,21113,2 

1113 :rem 58 
92111 DATA21111,199,199,195,191,187 :rem 68 
95111 DATA280111,29111111,30111111,3100,32111111,33111111 :rem 59 
10111111 PRINT"{CLR}":SC=3840111 :rem 49 
110111 PRINTTAB (47) ,,* {DOWN} {LEFT} t {DOWN } .. { DOWN} {2 LEFT} 1 

{2 DOWN}{ LEFT}#{ DOWN} % {DOWN} {2 LEFT}' {DOWN}& {DOWN} 
{2 LEFT} $ {DOWN}R" :POKE7838, 34 :POKE7838+SC, 1 : rem 2 

115111 PRINT"{HOME}"TAB(54)"-{2 DOWN}{2 LEFT}----{2 DOWN} 
{4 LEFT}----{2 DOWN}{4 LEFT}----{2 DOWN}{4 LEFT}-~--
{2 DOWN} {4 LEFT} ----{ 2 DOWN} {3 LEFT} -" : rem 11 

118 



Sound I 
and Graphics 

1400 PRINT" {HOME} "TAB (150)"] {DOWN }£{ DOWN} {2 LEFT} [" 
1600 RETURN 

: rem 27 
:rem 167 
:rem 129 

: rem 85 
:rem 207 
:rem 180 

:rem 50 

2000 R=0 
2010 POKESM+B+R,60:POKESC+B+R,2 
2020 GETS$:IFS$=""THEN2020 
2025 IFS$=" {DOWN} "THENPOKE38400+B+R,6 :R=R+22 
2030 IFS$=" {UP} "THENPOKE38400+B+R, 6 :R=R-22 
2040 IFS$="Z "THENPOKEB+R+SC,6 :GOT02070 
2060 GOT02010 
2070 RETURN 

: rem 35 
:rem 196 
:rem 169 

119 



G~~~ I Piano Player 
Many programs are available to emulate a piano on the VIC-20, but most do 
only that. "Piano Player" not only plays in any of the four voices of the VIC, 
and five combinations of them, but also displays a piano keyboard and the 
musical staff. Depressing a VIC key will display the note played on the staff 
and the piano keyboard as well as play the note. So extensive is the graphics 
in this program that a 3K expander is required and 64 programmable charac
ters are used. 

The objective of this program is to emulate a pian%rgan/synthesizer, 
and to display the full graphics of the musical staff and the piano keyboard. 
Since the three voices the VIC plays overlap, I decided to use the different 
voices to provide the lower octave and not to display the bass clef. This left 
more characters available to optimize what was being used. For instance, 17 
special characters were used to form the treble clef. 

As the programs are listed below, Program 1 will load and run Program 
2 if you use disk and save Program 2 with the filename PIANO.2. Tape 
users should delete lines 153, 155, and 156 of Program 1 and change line 
154 to read 
154 POKE198,1:POKE631,131:END 

I What to Do with It 
Piano Player is in two parts to fit on the 3K expanded VIC. The first part of 
Piano Player loads the programmable characters and gives instructions after 
a short fanfare. Then, the second part prints the musical staff and the piano 
keyboard on the screen. Piano Player is set for voice 2 (treble) initially. To 
change voices, just depress one of the numbers from 1 to 9. Pressing 1 gives 
voice 1 (base), 2 gives voice 2 (treble), 3 gives voice 3 (soprano), and 4 gives 
voice 4 (noise). Keys 5-9 give combinations of the four voices. Try them for 
synthesized effects. 

The middle row of the keyboard (A through =) plays the white keys 
from notes B to F (1-1/2 octaves). Middle C is the key S. The black piano 
keys are right above this row of VIC keys from Q to i. 

Press a few keys. You will notice that the sound and graphics last as 
long as a key is held down. Since the VIC reads only one key at a time, you 
won't be able to play two keys at once. 

I Sample Songs 
To familiarize yourself with Piano Player and its piano/synthesizer capabili
ties, try these simple songs (these are the VIC keys): 

The slash U) indicates a pause. 

120 



Happy Birthday 
SSDSGF /SSDSHG/ 

My Country 'Tis of Thee 
S S D A S D / F F G F D S 
HHHHGF / G G G G F D 
F G F D S F G H / J G F D 

Saints Go Marching In 
H K L / H K L / H K L 
K K J H H K L / K L 

I Note Guide 

S S L 

/ D S 
/ 
S 

K H 
K J 

Sound I 
and Graphics 

J G F D / I I J G HG 

A S / 

K J / 
J H 

Here's a conversion guide for VIC keys to notes: 

VIC Note 
Q Bb 
E C# 
R Eb 
Y F# 
U G1# 
I BD 
P C1# 
@ ED 
i F# 

VIC Note 
A B 
S C 
D D 
F E 
G F 
H G 
J A 
K B 
L C 

D 
E 
F 

Program 1. Piano Player 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 PRINT" {CLR} {4 DOWN} {RED} **********************" : rem 193 
11 PRINT"**********************" :rem 207 
12 PRINT"** VIC PIANO PLAYER **" :rem 2 
13 PRINT"**********************" :rem 209 
14 PRINT"**********************" :rem 210 
50 Sl=36974:S2=36875:S3=36876:S4=36877:SB=36879:V=36878:E=25: 

Q=50:W=100:P=200 :rem 86 
55 SX=SB:SY=S2:SZ=SB:F1=207:F2=195:GOSUB90 :rem 128 
56 SX=Sl:SY=S2:SZ=SB:F1=201:F2=192:GOSUB90 :rem 103 
57 SX=SB:SY=S2:SZ=S3:F1=207:F2=195:GOSUB90 :rem 115 
58 SX=Sl:SY=SB:SZ=S3:F1=209:F2=207:GOSUB90 :rem 111 
59 SX=SB:SY=S2:SZ=SB:F1=225:F2=219:GOSUB90 :rem 129 
60 SX=Sl:SY=S2:SZ=S3:F1=207:F2=219:POKESB,57:GOSUB90 :rem 239 
61 FORD=15T00STEP-1:POKEV,D:FORT=0T025:NEXTT:NEXTD:POKESB,27: 

GOT0100 :rem 222 

121 



Sound 
and Graphics 

90 POKEV,0:POKESX,Fl:POKESY,Fl:POKESZ,Fl:FORN=lT03:POKEV,15 
:rem 118 

93 FORT=0TOQ:NEXTT:POKEV,0:FORR=0TOE:NEXTR:NEXTN :rem 74 
95 POKESX,F2 :POKESY ,F2 :POKESZ, F2 :POKESB, F2+5 :POKEV ,15: rem 178 
97 FORT=0TOW:NEXTT:FORT=0TOP:NEXTT:RETURN :rem 155 
100 FORI=7168T07223:POKEI,PEEK(I+25608) :NEXT:FORI=7224T07287: 

POKEI,PEEK(I+26312):NEXT :rem 187 
102 FORI=7240T07247:POKEI,255-PEEK(I+26304) :NEXT :rem 77 
103 FORI=7272T07279:POKEI,PEEK(I+26240) : NEXT :rem 142 
104 FORI=7288T07295 :POKEI ,255-PEEK( 1+25736) :NEXT : rem 102 
105 FORI=7296T07303:POKEI,255-PEEK(I+25752) :rem 225 
106 FORJ=7304T07679:READA:POKEJ,A:NEXT:POKE52,27:POKE56,27:PR 

INT"{CLR}" :rem 239 
110 PRINT"{BLK}{2 Dmm} HANT INSTRUCTIONS ?{OOvlN}(6 LEFT}(Y/N 

)" : rem 41 
112 GETA$ :IFA$=""THENl12 : rem 75 
114 IFA$="N"THEN153 :rem 33 
116 PRINT"{CLR}{2 OO\m}USE YOUR VIC KEYBOARD (OO\m}AS A PIANO 

KEYBOARD:" :rem 117 
118 PRINT"{OO~m}THE VIC KEYS FROM 'A' {OOWN}TO '=' ARE THE ~m 

ITE" :rem 183 
120 PRINT"{OO~m}KEYS FROM 'B' TO 'F', {OO\lN}WITH 's' AS MIDDL 

E C." :rem 122 
122 PRINT"{OOWN}THE BLACK KEYS ARE(4 SPACES}{OOWN}THE KEYS FR 

OM 'Q' TO" :rem 109 
124 PRINT"{OOWN}'t'." :rem 83 
126 PRINT"{OOWN}--- PRESS ANY KEY :rem 231 
128 GETA$ :IFA$=""THEN128 : rem 89 
130 PRINT" {CLR}{ OOWN} THIS PROGRAM USES ALL {OOWN}THE VOICES 0 

F THE VIC" :rem 133 
132 PRINT" {OOWN}-ALTO, SOPRANO, TENOR, {OOWN}AND NOISE." 

:rem 147 
134 PRINT" {OOWN} IT STARTS WITH SOPRANO{ OOWN}THEN YOU CAN CHAN 

GE" :rem 11 
136 PRINT"{OO~VN}TO ANY OTHER BY FIRST (OOWN}PRESSING 'I' THRU 

'9'." :rem 159 
138 PRINT"{2 OOWN}FOR A CHART OF THE{4 SPACES} {OOWN}VOICES PR 

ESS ANY KEY" : rem 215 
140 GETA$:IFA$=""THEN140 :rem 77 
142 PRINT"{CLR}{OOWN}1=Vl{7 SPACES}5=Vl+V2(4 SPACES}{OO\m}2=V 

2{7 SPACES}6=V2+V3{4 SPACES}{OOWN}3=V3{7 SPACES}7=Vl+V3" 

144 

146 

:rem 29 
PRINT" (OOWN} 4=V4{7 SPACES} 8=Vl+V2+V3 {OOWN} 9=Vl+V2+V3+V4 
{9 SPACES} {2 OOWN}WHERE:" :rem 218 
PRINT" {OOWN}Vl=ALTO{ 5 SPACES} V3=TENOR( 2 SPACES} {OOWN}V2=S 
OPRANO{2 SPACES}V4=NOISE{2 SPACES}{OOWN}--- PRESS ANY KEY 

" :rem 121 
148 GETA$:IFA$=""THEN148 : rem 93 

:rem 124 
:rem 240 

153 POKE 36879,15:PRINT"{CLR}{YEL}PLEASE WAIT ••••• " 
154 POKE198,2:POKE 631,13:POKE 632,13 

122 



Sound 
and Graphics 

155 PRINT "{HOME}{BLK}":PRINT "{2 OOWN}LOAD":CHR$(34):"PIANO. 
2" : CHR$ ( 34) : " ,8" : 

156 PRINT "{4 OOWN}RUN":PRINT"{HOME}":END 
1000 DATA15,14,12,14,12,14,15,15 
1010 DATA240,176,16,176,16,176,240,240 
1020 DATA239,239,239,227,237,237,235,231 
1030 DATA14,14,14,14,14,14,14,14:REM#20 
1040 DATA240,240,240,48,208,208,176,112 
1050 DATA0,0,1,1,1,1,1,255 
1060 DATA0,1,1,3,7,14,28,255 
1070 DATA56,48,113,97,99,99,99,255 
1080 DATA97,48,48,24,12,6,3,255:REM#25 
1090 DATA0,0,0,24,60,118,99,227 
1100 DATA195,193,129,129,131,131,135,255 
1110 DATA135,135,79,94,94,60,124,255 
1120 DATA240,240,208,144,16,8,8,255 
1130 DATA127,255,200,132,132,4,4,255:REM#30 
1140 DATA130,194,34,2,1,1,255,255 
1150 DATA0,0,0,0,56,124,252,216 
1160 DATA128,192,99,28,0,0,0,0 
1170 DATA0,128,128,128,128,128,128,255 
1180 DATA224,240,120,56,28,12,12,255:REM#35 
1190 DATA12,12,24,24,48,32,192,255 
1200 DATA128,128,128,128,64,64,64,64 
1210 DATA64,128,0,0,0,0,0,0 
1220 DATA1,63,127,255,254,124,0,0 
1230 DATA1,63,127,255,254,124,0,255:REM#40 
1240 DATA254,124,0,0,0,0,0,0 
1250 DATA254,124,0,0,0,0,0,255 
1260 DATA1,1,1,1,1,63,127,255 
1270 DATAl,1,1,1,1,1,1,255 
1280 DATA0,0,0,0,1,1,1,255:REM#45 
1290 DATA0,62,127,255,254,252,128,255 
1300 DATA0,0,0,0,0,62,127,255 
1310 DATA254,254,128,128,128,128,128,255 
1320 DATA128,128,128,128,128,128,128,255 
1330 DATA128,128,128,0,0,0,0,0:REM #50 
1340 DATA128,128,128,0,0,0,0,255 
1350 DATA20,62,20,20,20,62,20,255 
1360 DATA0,0,0,0,20,62,20,20 
1370 DATA20,62,20,0,0,0,0,0 
1380 DATA0,0,0,0,20,62,20,255:REM#55 
1390 DATA20,62,20,0,0,0,0,255 
1400 DATA0,0,0,32,32,32,32,32 
1410 DATA60,50,34,34,36,40,48,32 
1420 DATA32,32,32,32,60,50,34,255 
1430 DATA36,40,48,32,0,0,0,0:REM#60 
1440 DATA36,40,48,32,0,0,0,255 
1450 DATA0,0,0,32,32,32,32,255 
1460 DATA60,50,34,34,36,40,48,255 

:rem 183 
:rem 213 

:rem 54 
:rem 122 
:rem 238 
:rem 221 
:rem 167 

:rem 5 
:rem 124 
:rem 228 
:rem 213 
:rem 27 

:rem 227 
:rem 38 

:rem 228 
:rem 175 
:rem 121 

:rem 9 
:rem 233 
:rem 133 
:rem 185 
:rem 180 

:rem 37 
:rem 55 

:rem 117 
:rem 135 
:rem 103 
:rem 212 
:rem 171 
:rem 11 

:rem 178 
:rem 83 

:rem 160 
:rem 236 
:rem 237 
:rem 124 

:rem 67 
:rem 109 
:rem 102 
:rem 53 
:rem 77 

:rem 163 
:rem 156 

: rem 75 
:rem 119 
:rem 27 

:rem 225 
: rem 216 
:rem 135 

123 



Sound 
and Graphics 

Program 2. Piano.2 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

21313 POKE 36879,27:PRINT"{CLR}" :rem 5 
2113 SM=7680:CM=38400 :rem 75 
2313 Sl=36874:S2=36875:S3=36876:S4=36877:V=36878:SB=36879:SX=2 

:rem 209 
2413 DEFFNA(X)=PEEK(197)=X:YS=SM+318:YN=SM+406:POKEV-9,255 

:rem 198 
2513 DlMA(47):FORN=0T046:READA(N):NEXTN :rem 84 
310 FORW=SMTOSM+505:POKEW,7:NEXT:FORQ=CMTOCM+505:POKEQ,0:NEXT 

:rem 25 
320 FOR X=SM+44TOSM+153:POKEX,11:NEXT :rem 19 
322 Y=23:POKESM+44,22:FORX=SM+88TOSM+132STEP22:POKEX,Y:Y=Y+1: 

NEXTX : rem 239 
324 Y=26:FORX=SM+23TOSM+177STEP22:POKEX,Y:Y=Y+l:NEXTX:rem 198 
326 Y=35:POKESM+46,34:FORX=SM+112TOSM+178STEP22:POKEX,Y:Y=Y+1 

:NEXTX : rem 41 
328 T=SM+264:M=SM+351:B=SM+439:FORK=T-22TOT-l:POKEK,11:NEXT 

:rem 127 
3313 PRINT"{BLK}{HOME}{12 DOWN}" :rem 214 
332 C=C+l:PRINT"{UP}OIHOGLOIHMIHOIHMIHOGLO" :rem 194 
334 IFC<4GOT0332 :rem 173 
336 C=C+l:PRINT"{UP}MGLMGLMGLMGLMGLMGLMGLM" :rem 196 
338 IFC<8GOT0336 :rem 185 
3413 FORK=B+ITOB+22:POKEK,10:NEXT :rem 210 
344 A=22:B=44:C=66:D=88:E=23 :rem 16 
3513 GETA$:IFA$=""THEN350 :rem 83 
355 N=ASC(A$):IFN<480RN>94THEN35e :rem 213 
360 F=A(N-48):IFF>eANDF<10THENSX=F:GOT0350 :rem 48 
370 IFF=eTHEN350 :rem 163 
371 IFSX=lTHENPOKESl,F:POKES2,0:POKES3,0:POKES4,0:POKEV,15:GO 

T04e0 :rem 208 
372 IFSX=2THENPOKES1,0:POKES2,F:POKES3,0:POKES4,0:POKEV,15:GO 

T04ee :rem 210 
373 IFSX=3THENPOKES1,0:POKES2,0:POKES3,F:POKES4,0:POKEV,15:GO 

T0400 :rem 212 
374 IFSX=4THENPOKESl,0:POKES2,0:POKES3,0:POKES4,F:POKEV,15:GO 

T04e0 :rem 214 
375 IFSX=5THENPOKESl,F:POKES2,F:POKES3,0:POKES4,0:POKEV,15:GO 

T0400 :rem 238 
376 IFSX=6THENPOKESl,0:POKES2,F:POKES3,F:POKES4,0:POKEV,15:GO 

T0400 :rem 240 
377 IFSX=7THENPOKESl,F:POKES2,0:POKES3,F:POKES4,0:POKEV,15:GO 

T0400 :rem 242 
378 IFSX=8THENPOKESl,F:POKES2,F:POKES3,F:POKES4,0:POKEV,15:GO 

T0400 : rem Ie 
379 IFSX=9THENPOKESl,F:POKES2,F:POKES3,F:POKES4,F:POKEV,15:GO 

T04ee :rem 34 
395 GOT0350 :rem 114 
4130 IFA$="A"THEN600 :rem 15 

124 



Sound 
and Graphics 

405 IFA$=IQ"THEN610 : rem 37 
410 IFA$=IS"THEN620 :rem 36 
415 IFA$=IE"THEN630 :rem 28 
420 IFA$=ID"THEN640 :rem 24 
425 IFA$=IR"THEN650 :rem 44 
430 IFA$=IF"THEN660 :rem 29 
435 IFA$=IG"THEN670 :rem 36 
440 IFA$="YITHEN680 :rem 51 
445 IFA$=IH"THEN690 :rem 40 
450 IFA$=IU"THEN700 :rem 41 
455 IFA$=IJ"TIIEN710 :rem 36 
460 IFA$=II"THEN720 :rem 32 
465 IFA$=IK"THEN730 :rem 40 
470 IFA$=IL"THEN740 :rem 38 
475 IFA$="PITHEN750 :rem 48 
480 IFA$=I:"THEN760 :rem 23 
485 IFA$=I@"THEN770 :rem 35 
490 IFA$=I;"THEN780 :rem 27 
495 IFA$=I="THEN790 :rem 35 
500 IFA$=lt"THEN800 :rem 47 
510 GOT0350 :rem 103 
600 GOSUB605 :rem 177 
602 IFFNA(17)THEN602 :rem 124 
604 GOSUB608:POKEY-A,7:POKEY,7:GOT0350 :rem 123 
605 Y=SM+180:K=6:N=1:GOSUB606:RETURN :rem 243 
606 POKEYN-K,N:POKEY-C,B:POKEY-B,B:POKEY-A,B:POKEY,39:RETURN 

: rem 181 
608 POKEV,0:POKEYN-K,7:FORX=3TOlSTEP-l:POKEY-A*X,11:NEXT:RETU 

RN :rem 148 
610 GOSUB605:POKEYS-K-l,19:POKEY-E,57:POKEY-l,58 :rem 184 
612 IFFNA(48)THEN612 :rem 130 
614 GOSUB608:POKEY-A,7:POKEY,7:POKEY-E,7:POKEY-l,7:POKEYS-K-l 

,15:GOT0350 :rem 19 
620 GOSUB625 :rem 181 
622 IFFNA(41)THEN622 :rem 125 
624 GOSUB628:POKEY-E,7:POKEY-A,7:POKEY-A+l,7:POKEY,7:GOT0350 

:rem 5 
625 Y=SM+181:K=5:N=2:GOSUB626:POKEY-E,11:POKEY-A+l,11:RETURN 

:rem 212 
626 POKEYN-K,N:POKEY-D,45:POKEY-C,B:POKEY-B,B:POKEY-A,43:POKE 

Y,41:RETURN :rem 157 
628 POKEV,0:POKEYN-K,12:FORX=4TOlSTEP-l:POKEY-A*X,11:NEXT:RET 

URN :rem 195 
630 GOSUB625:POKEYS-K+l,16:POKEY-E,55:POKEY-l,54 :rem 177 
632 IFFNA(49)THEN632 :rem 135 
634 GOSUB628:POKEY-A,7:POKEY,7:POKEY-A+l,7:POKEYS-K+l,15:POKE 

Y-E,7:POKEY-l,7:GOT0350 :rem 4 
640 Y=SM+161:K=3:N=3:GOSUB606 :rem 214 
642 IFFNA(18)THEN642 :rem 133 
644 GOSUB608:POKEY,7:GOT0350 :rem 236 
650 GOSUB665:GOSUB656 :rem 23 

125 



Sound 
and Graphics 

652 IFFNA(10)THEN652 :rem 127 
654 GOSUB628:POKEY,7:GOSUB658:GOT0350 :rem 76 
656 POKEY-E,59:POKEY-l,60:POKEYS-K-l,20:POKEYS-K,21:RETURN 

:rem 150 
658 POKEY-E,11:POKEY-l,7:POKEYS-K-l,9:POKEYS-K,8:RETURN:rem 9 
660 GOSUB665 :rem 189 
662 IFFNA(42)THEN662 :rem 134 
664 GOSUB628:POKEY,7:GOT0350 :rem 240 
665 Y=SM+162:K=2:N=4:GOSUB626:RETURN :rem 250 
670 GOSUB675 :rem 191 
672 IFFNA(19)THEN672 :rem 140 
674 GOSUB608:POKEY,11:GOT0350 :rem 26 
675 Y=SM+142:K=0:N=5:GOSUB606:POKEY,40:RETURN :rem 72 
680 GOSUB675:POKEY-l,52:POKEYS,17:POKEYS+l,18 :rem 34 
682 IFFNA(11)THEN682 :rem 134 
684 GOSUB608:POKEY,11:POKEY-l,11:POKEYS,9:POKEYS+l,8:GOT0350 

:rem 24 
690 GOSUB695 :rem 195 
692 IFFNA(43)THEN692 :rem 141 
694 GOSUB628:POKEY,11:GOT0350 :rem 30 
695 Y=SM+143:K=-1:N=6:GOSUB626:POKEY,42:RETURN :rem 126 
700 GOSUB695:POKEYS+2,16:POKEY-E,55:POKEY-l,56 :rem 65 
702 IFFNA(51)THEN702 :rem 124 
704 GOSUB628: POKEY, 11 :POKEYS+2, 15: POKEY-E, 11 : POKEY-l, 11 :GOT03 

50 : rem 138 
710 Y=SM+123:K=-3:N=0:GOSUB606:POKEY,40 :rem 78 
712 IFFNA(20)THEN712 :rem 122 
714 GOSUB608:POKEY,11:GOT0350 :rem 21 
720 GOSUB735:POKEYS+K-l,20:POKEYS+K,21:POKEY-l,59:POKEY+A-l,6 

1 : rem 34 
722 IFFNA(12)THEN722 :rem 125 
724 J=2:GOSUB738:GOSUB728:POKEYS+K-l,9:POKEYS+K,8:POKEY-l,11: 

POKEY+A-l,11:GOT0350 :rem 29 
726 POKEY+C,12:POKEY+O,50:RETURN :rem 0 
728 POKEY+C,7:POKEY+O,7:RETURN :rem 168 
730 GOSUB735 :rem 185 
732 IFFNA(44)THEN732 :rem 132 
734 J=2:GOSUB738:GOSUB728:GOT0350 :rem 25 
735 Y=SM+102:K=4:N=1:GOSUB736:GOSUB726:RETURN :rem 76 
736 POKEYN+K,N:POKEY,47:POKEY+A,48:POKEY+B,49:RETURN :rem 103 
738 POKEV,0:POKEYN+K,12:FORX=0TOJ:POKEY+A*X,11:NEXT:RETURN 

:rem 60 
740 GOSUB745 :rem 187 
742 IFFNA(21)THEN742 :rem 129 
744 GOSUB748:POKEY+C,7:GOT0350 :rem 96 
745 Y=SM+104:K=6:N=2:GOSUB746:POKEY+C,12:RETURN :rem 185 
746 POKEYN+K,N:POKEY,46:POKEY+A,49:POKEY+B,49:RETURN :rem 104 
748 POKEV,0:POKEYN+K,7:FORX=0T02:POKEY+A*X,11:NEXT:RETURN 

750 GOSUB745:POKEYS+K,17:POKEYS+K+l,18:POKEY-l,52 

126 

:rem 249 
: rem 10 



Sound I 
and Graphics 

752 IFFNA(13)THEN752 :rem 132 
754 GOSUB748:POKEY+C,7:POKEYS+K,9:POKEYS+K+1,8:POKEY-1,11:GOT 

0350 : rem 74 
760 Y=SM+83:K=7:N=3:GOSUB736:POKEY+C,49:POKEY+D,50 :rem 63 
762 IFFNA(45)THEN762 :rem 139 
764 J=3:GOSUB738:POKEY+D,7:GOT0350 :rem 86 
770 GOSUB785:K=9:POKEYS+K-l,19:POKEY-E,62:POKEY-l,63 :rem 185 
772 IFFNA(53)THEN772 :rem 140 
774 GOSUB748:POKEY+C,11:POKEYS+K-l,15:POKEY-E,11:POKEY-1,1l:G 

OT0350 :rem 121 
780 GOSUB785 :rem 195 
782 IFFNA(22)THEN782 :rem 138 
784 GOSUB748:POKEY+C,11:GOT0350 :rem 143 
785 Y=SM+85:K=9:N=4:GOSUB746:POKEY+C,49:RETURN :rem 164 
790 GOSUB795 :rem 197 
792 IFFNA(46)THEN792 :rem 146 
794 J=4:GOSUB738:GOT0350 :rem 198 
795 Y=SM+64:K=10:N=5:GOSUB736:POKEY+C,49:POKEY+D,51:RETURN 

:rem 141 
800 GOSUB795:POKEYS+K+l,16:POKEY-1,55:POKEY+A-1,56 :rem 16 
802 IFFNA(54)THEN802 :rem 129 
804 J=4:GOSUB738:POKEYS+K+l,15:POKEY-1,11:POKEY+A-l,11:GOT035 

o :rem 255 
2000 DATA0,1,2,3,4,5,6,7,8,9 :rem 117 
2010 DATA228,231,0,232,0,0,229,191,0,0 :rem 90 
2020 DATA201,199,207,209,215,221,219,223,225,0 :rem 253 
2030 DATA0,0,227,187,203,195,0,217,0,0 :rem 100 
2040 DATAeJ,212,0,0,0,0,233 :rem 5 
3000 END :rem 154 

127 



pauli 
McManamon Bitmapping Pixel 

This drawing program for a VIC with 8K or more expansion and a joystick 
uses the bitmap screen to test your artistic talent. Just type in Program 1 and 
save it to disk or tape. Then type in Program 2 and save it. Disk users must 
save Program 2 with the filename BM PIXEL.2. Tape users should save Pro
gram 2 on the same tape immediately following Program 1. Tape users must 
also delete lines 15 and 20 from Program 1 and substitute the following for 
line 10: 

10 POKE8192,O:POKE44,32:POKE643,32:POKE198,1:POKE631,131 

I Drawing Pixel by Pixel 
Once you have the programs saved, run Program 1. It will change the loca
tion of BASIC and automatically load and run Program 2. The first thing 
you'll see is the character set printed to the screen in what appears to be ran
dom order. Then the whole screen is erased and changed to the bitmapped 
screen which is also erased. Finally, a single pixel dot will appear in the mid
dle of the screen. Use a joystick to draw, one pixel at a time. It you wish to 
move the drawing position to another part of the screen without leaving a 
line, simply hold down the button while pushing on the stick. 

Program 1. Bitmap Pixel 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

5 REM THIS PROGRAM MOVES BASIC :rem 85 
10 POKE8192,0:POKE44,32:POKE643,32:POKEI98,2:POKE631,13:POKE 

[SPACE}632,13 :rem 73 
15 PRINT "[CLR}": PRINT "(2 DOWN } LOAD " : CHR$ (34) : "BM PIXEL. 2": C 

HR$ (34):",8" :PRINT "[ 5 DOWN} RUN " : rem 39 
20 PRINT "{HOME}" : rem 70 

Program 2. BM Pixel.2 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

5 REM MOVES SCREEN MEMORY :rem 60 
10 POKE36866,150:POKE36869,240 :rem 154 
20 POKE 209,0:POKE210,30:POKE201,0:POKE202,0:POKE211,0:POKE21 

4,0 :rem 121 
30 POKE648,30:POKE244,150 :rem 136 
90 DD=37154:Pl=37151:P2=37152 :rem 38 
99 REM SET UP SCREEN :rem 167 
100 POKE36879,107:PRINTCHR$(147) :rem 74 
102 POKE36867,PEEK(36867)OR1 :rem 82 
104 FORI=0T021:POKE7680+I,220:POKE7922+I, 220:POKE7944+I, 220 :N 

EXT :rem 9 

128 



Sound I 
and Graphics 

106 FORI=0T021:POKE38400+I,3:POKE38642+I,3:POKE38664+I,3:NEXT 
:rem 120 

108 
11121 
120 
130 
140 
150 
160 

FORI=0T015:POKE7616+I,255:NEXT 
FOR L=0T021:FORM=0T09 
POKE7702+M*22+L,L*10+M 
NEXT:NEXT 
POKE36869,252 
FORI=4096T07615:POKEI,0:NEXTI 
REM SCREEN IS{5 SPACES}Y=160 HIGH 

170 X=88:Y=80 
200 GOSUB1000 
210 IFJl=lTHENY=Y+l 
220 IF J3=lTHEN Y=Y-l 
230 IFY>159 THEN Y=159 
240 IFY<0THEN Y=0 
250 IFJ0=lTHENX=X+l 
260 IFJ2=lTHENX=X-l 
270 IFX>175THENX=175 
280 IFX<0THENX=0 
290 CH=INT(X/8)*10+INT(Y/16) 
300 RO=(Y/16-INT(Y/16»*16 
310 BY=4096+16*CH+RO 
320 BI=7-(X-(INT(X/8)*8» 
330 IFFB=0THENPOKEBY,PEEK(BY)OR(2tBI) 

:rem 49 
:rem 239 
:rem 138 

:rem 76 
:rem 153 

:rem 28 
BY X=176{4 SPACES}WIDE 

:rem 27 
:rem 213 
:rem 211 
:rem 133 
:rem 138 
:rem 190 
:rem 223 
:rem 134 
:rem 139 
:rem 188 
:rem 225 

: rem 63 
:rem 154 

: rem 82 
:rem 69 

335 IFFB>.5THENPOKEBY,PEEK(BY)AND(255-(2tBI» 
340 GO TO 200 

:rem 93 
:rem 226 
:rem 98 

:rem 208 
:rem 108 
:rem 181 

1000 REM SUBROUTINE TO READ JOY SWITCHES 
1010 POKEDD,127:P=PEEK(P2)AND128 
1020 J0=-(P=0) 
1030 POKEDD,255:P=PEEK(Pl) 
1040 Jl=-«PAND8)=0) 
1050 J2=-«PAND16)=0) 
1060 J3=-«PAND4)=0) 
1070 FB=-«PAND32)=0) 
1080 RETURN 

:rem 1 
:rem 20 
:rem 69 
:rem 20 
: rem 81 

:rem 169 

129 



Soori I 
Sivakumaran Graph 

"Graph" will allow you to create bar graphs on your VIC. A maximum of 16 
items can be graphed, and the bars can be of eight different colors. Once a 
graph is created, it can be stored on cassette tape and later reproduced on 
the VIC's screen. 

When you create a graph, you must give it a title. The graph will be re
ferred to by this title when it's recalled if you save it on tape. 

Using the graph program is easy. Suppose you want to graph the 
monthly fuel costs for a year. Enter the number 12 so the VIC will know 
how many items to graph. The total number of items that can be graphed is 
limited to 16. 

The bars drawn by the program are a minimum width of one column. 
However, if fewer than 16 items are graphed, the program adjusts the width 
of the bars to a maximum number of columns while maintaining their 
uniformity. 

You can set the vertical axis maximum value or the value of the vertical 
axis increments. Since the number of vertical divisions is set at 20 in the pro
gram, entering a vertical maximum of 100 would be identical to setting the 
vertical increments to 5. 

The top row of the screen is reserved for the title of the graph. The next 
20 rows of the screen are used for drawing the bars of the graph. The row 
below the bars is occupied by the horizontal axis. The last row of the VIC's 
screen contains the letters that label the horizontal axis. Thus, the entire 23 
rows of the screen are occupied by the graph. 

The program requires the user to identify the vertical axis, that is, what 
the numbers along the vertical axis represent. In the case of a graph of the 
year's fuel costs, the vertical axis would be identified as "Cost in Dollars." 

Lines 177-198 of the program contain a FOR-NEXT loop in which the 
name, bar color, and value for each item are entered starting with item A. In 
the example of graphing a year's fuel costs, the name of item A would be 01 
for January. Select the color of each bar by entering the number that corre
sponds with the color wanted according to the color chart that is printed on 
the screen. If the bar representing January's fuel costs was to be made yel
low, the number 7 would be entered. (Remember that a white bar won't be 
distinguishable on a white screen.) The value of the item is the number of 
units of the item. For the graph of a year's fuel costs, the value 85 would be 
entered for item A if January's fuel cost was $85. 

Lines 210-280 contain two FOR-NEXT loops. The first prints the vertical 
axis and the second labels it. Line 265 of the program limits the length of the 
numbers labeling the vertical axis to prevent them from running into the bars 
of the graph. If a number that will go along the vertical axis is longer than 

130 



Sound 
and Graphics 

two digits, the program may produce an OUT OF MEMORY error. Line 290 
of the program draws the horizontal axis of the graph. 

After the graph is completely printed on the screen, the routine in lines 
620-720 scans the keyboard. If a letter that is a horizontal label is pressed, 
the name and value of the corresponding item is printed at the top left of the 
screen. If the V key is pressed, the vertical axis is identified. 

Pressing the S key will save the graph on tape or disk. Disk users 
should change lines 60 and 2010 to: 
60 OPEN 1,8,2,A$ 
2010 OPEN 1,8,2,A$ + ",5, W" 

To reproduce a previously saved graph on the screen, simply run the 
program and select to display a stored graph. 

"Graph" is quite a useful program for graphing all types of information, 
particularly in the area of budgeting. 

Graph 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

5 B$=" ABCDEFGHIJKLMNOP" : H$=CHR$ ( 112) : I $=CHR$ ( 145 ) : J$=CHR$ ( 17) 
:K$=CHR$(147):L$=CHR$(19) 

7 M$=CHR$ (18) :N$=CHR$ (146) :O$=CHR$ ( 157) 
10 PRINTK$~J$~J$~J$~J$TAB(3)M$"DO YOU WISH TO"N$ 
15 PRINTJ$TAB(2)"A)CREATE A NEW GRAPH" 
20 PRINTTAB(2) "B)DISPLAY A STORED":PRINT"GRAPH" 
25 PRINTJ$"SELECT "M$;"A"N$" OR "M$"B"N$; 
30 INPUTF$ 
35 IFF$="A"THEN100 
40 PRINT"ENTER THE GRAPH'S" :PRINT"TITLE"; 
45 INPUTA$ 
50 PRINT"OPENING FILE" 
55 REM LOAD GRAPH 
60 OPEN 1,1,0,A$ 
65 INPUTU ,A$ 
67 INPUT#! ,G$ 
70 INPUTU,A 
75 INPUT#!, B 
80 DIMD$(A):DIMC(A):DIMD(A) 
85 FORI=l TOA 
87 INPUTU,D$(I) 
90 INPUTU ,C( I) 
92 INPUT#!,D(I) 
95 NEXT I 
97 CLOSE 1:GOT0200 
100 PRINTK$ 
110 PRINTM$"GRAPH'S TITLE"N$; 
120 INPUTA$ 
125 PRINTJ$"MAXIMUM OF 16 ITEMS" 
130 PRINTJ$"HOW MANY ITEMS TO" 

:rem 83 
:rem 79 

:rem 241 
:rem 186 
:rem 157 
:rem 146 

:rem 93 
:rem 227 
:rem 72 
:rem 94 

:rem 102 
:rem 224 
:rem 19 

:rem 224 
:rem 232 
:rem 184 
:rem 190 

:rem 15 
:rem 239 
:rem 129 

:rem 86 
:rem 89 

:rem 246 
:rem 28 

:rem 141 
:rem 239 
:rem 136 
:rem 115 
:rem 27 

131 



Sound 
and Graphics 

140 PRINT "GRAPH" ~ : rem 19 
150 INPUT A :rem 103 
151 PRINTJ$"OO YOU WISH TO: "J$ :rem 236 
152 PRINT"l)SET VERTICAL AXIS":PRINT"MAXIMUM" :rem 103 
154 PRINT"2)SET VERTICAL":PRINT"INCREMENTS" :rem 15 
155 PRINTJ$~M$"SELECT (1 OR 2)"N$~ :INPUTN :rem 96 
157 IFN=lTHEN163 :rem 177 
158 PRINTJ$"THERE ARE 20 VERTICAL" :PRINT"DIVISIONS." :rem 218 
160 PRINTJ$"INPUT VERTICAL":PRINT"INCREMENTS"~ :rem 254 
162 INPUTB:GOT0165 :rem 122 
163 PRINTJ$"INPUT VERTICAL":PRINT"MAXIMUM"~ :rem 39 
164 INPUTN:B=N/20 :rem 17 
165 PRINTK$ ~J$" IDENTIFY VERTICAL": PRINT "AXIS" ~ : INPUTG$ 

:rem 235 
166 PRINTJ$SPC(6)M$"BAR COLOURS"N$~J$ :rem 209 
167 PRINTSPC(2)"BLACK=0"SPC(4)" WHITE=l" :rem 64 
168 PRINTSPC (4) "RED=2" SPC (6) "CYAN=3" : rem 113 
170 PRINTSPC (1)" PURPLE=4" SPC (5) "GREEN=5" : rem 173 
172 PRINTSPC( 3) "BLUE=6 "SPC (4) "YELLOW=7" : rem III 
173 DIMD$(A):DIMC(A):DIMD(A) :rem 66 
175 PRINTJ$~M$"IDENTIFY ITEMS"N$;J$ :rem 129 
177 FORI=lTOA :rem 33 
180 PRINT"NAME ITEM "M$~MID$(B$,I,l)N$~ :rem 154 
182 INPUTD$(I) :rem 45 
185 PRINT"ITEM "M$~MID$(B$,I,l)~N$" BAR COLOUR"~ :rem 166 
187 INPUT C(I) :rem 13 
188 PRINT"VALUE OF ITEM "M$~MID$(B$,I.l)N$~ :rem 147 
190 INPUTD(I) :rem 8 
192 IFD(I»(20*B)THEN190 :rem 47 
195 PRINTL$:FORO=lT06:PRINTJ$:NEXTO:FORJ=7966T08098:POKEJ,32: 

NEXTJ :rem 87 
198 NEXTI :rem 42 
200 PRINTK$~J$~J$~J$TAB(3)"TO GET AN ITEM'S ":PRINT" NAME AND 

VALUE ENTER" :rem 221 
202 PRINTTAB(3)"THE LETTER THAT":PRINT" REPRESENTS THE ITEM." 

:rem 246 
204 PRINTJ$" ENTERING "M$"S"N$"WILL SAVE"SPC(3) "THE GRAPH ON 

{SPACE}TAPE." :rem 76 
205 PRINTJ$TAB(4)"ENTERING "M$"X"N$"WILL ":PRINTTAB(5)"END PR 

OGRAM. " : rem 14 
206 PRINTJ$" ENTER "M$"V"N$"TO IDENTIFY"SPC(6)"VERTICAL AXIS" 

:rem 85 
207 PRINTJ$"ENTER ANY LETTER TO":PRINT"CONTINUE"~ 
208 INPUTF$:PRINTK$ 
209 REM DRAW AXIS 
210 FORI=lT020 
220 PRINTTAB(4)H$ 
230 NEXTI 
240 PRINTTAB(2)"0" 
250 PRINTL$ 
260 FORI=0T019 

132 

:rem 92 
:rem 202 
:rem 226 

:rem 54 
:rem 233 

:rem 29 
: rem 241 
:rem 148 
:rem 66 



265 C$=STR$«B*20)-(B*I)):C$=LEFT$(C$,5) 
270 PRINTO$;C$ 
280 NEXTI 
290 FORI=lT017:PRINTTAB(3+I)H$;I$:NEXTI 
300 G%=16/A:DIME(16):DIMF(16):H=1:DIML(16) 
310 FORI=l TOA 
320 FORJ=lTOG% 
330 E(H)=INT(D(I)/B) 
340 K=(D(I)/B)-E(H) 
350 F(H)=98 
360 IFK>.75THENF(H)=160 
370 IFK<.25THENF(H)=32 
380 L(H)=C(I) 
390 H=H+1 
400 NEXTJ 
410 NEXTI 
415 H=H-1 
417 REM DRAW BARS 
420 FORI=HT01STEP-1 
430 FORJ=lTOE(I) 
435 IFE(I)=0THEN470 
440 POKE8146+I-(J*22),160 
450 POKE38866+I-(J*22),L(I) 
460 NEXTJ 
470 POKE8146+I-(J*22),F(I) 
480 POKE38866+I-(J*22),L(I) 
500 NEXTI 
505 H=l:PRINT 
510 FORI=lTOA 
520 FORJ=l TOG% 
530 PRINTSPC(4+H)MID$(S$,I,1)1$ 
535 H=H+1 
540 NEXTJ 
550 NEXTI 
600 M=LEN(A$):M=«22-M)/2) 
605 GOSUB1000:PRINTL$TAB(M)A$ 
620 GETE$:IF E$="X"THEN:PRINTK$:END 
622 IFE$="V"THENGOSUB1000 :PRINTL$; G$ :GOT0710 
625 IFE$=""THEN620 
627 IFE$="S"THENGOT02000 
630 FORI=lTOA 
640 IFE$=MID$(B$,I,1)THEN7t2J0 
650 NEXTI 
700 GOSUB1000:IFI=<A THEN:PRINTL$:D$(I):" -":D(1) 
710 FORJ=lT0100t2J:NEXT 
720 GOT0600 
1000 FORJ=7680T07701 
1010 POKEJ, 32 
1020 NEXTJ 
1030 RETURN 
2000 PRINTK$"OPENING FILE" 

Sound 
and Graphics 

:rem 71 
:rem 59 
:rem 34 

:rem 176 
:rem 62 
: rem 22 
:rem 67 
:rem 60 

:rem 202 
:rem 37 
:rem 45 

: rem 245 
:rem 154 
:rem 197 

:rem 29 
:rem 29 

:rem 197 
:rem 214 
: rem 185 
:rem 184 

:rem 65 
:rem 39 

:rem 179 
:rem 35 

:rem 115 
:rem 182 

:rem 29 
:rem 23 
:rem 24 
:rem 69 

:rem 247 
:rem 198 

:rem 34 
:rem 34 
:rem 90 

:rem 237 
:rem 98 

:rem 193 
:rem 221 
: rem 149 

:rem 27 
:rem 28 
:rem 35 
:rem 12 
:rem 20 

:rem 104 
:rem 118 
: rem 204 

:rem 76 
:rem 164 

:rem 50 

133 



------------------

Sound 
and Graphics 

2'11'115 REM SAVE GRAPH :rem 76 
2'111'11 OPENl,l,l,A$ :rem 113 
2'112'11 PRINT#l ,A$ :rem 54 
2'1125 PRINT#l ,G$ :rem 65 
2'113'11 PRINT#l ,A : rem 19 
2'114'11 PRINT#l,B :rem 21 
2'115'11 FORI=lTOA :rem 73 
2'116'11 PRINT#l, D$ (I) :rem 215 
2'117'11 PRINT#l ,C( I) :rem 179 
2'118'11 PRINT#!, D( I) : rem 181 
2'119'11 NEXTI :rem 83 
21'11'11 PRINT "CLOSING FILE" :rem 195 
211'11 CLOSE 1 :rem 1'117 

134 



s~~~~ I Rainbow Border 
When I first started experimenting with changing the screen format (number 
of rows and columns) on the VIC, I wanted a way to use the screen border. 
It happened that I was also getting into machine language at the same time 
and was trying to duplicate things I had done in BASIC as exercises. 

I decided to see what would happen when I changed decimal location 
36879 (screen and border color register) as rapidly as possible in machine 
language. Wow! The entire VIC screen turned into fragments of different col
ors. It changed the screen color many times for each scan line on the TV. I 
decided that the routine needed a delay loop. After adding the loop and run
ning the program again, I saw bars of colors scrolling very fast in the border. 
I had also changed the range of colors so that the screen color stayed the 
same. By fine-tuning the delay loop, I was able to broaden and stabilize the 
bars of color. 

I Color Scrolling 
"Flag" was the first program I wrote to use this technique. It is very short 
and easy to type in, but as always be sure to get the DATA statements right. 
The machine language routine that does the work is represented by those 
numbers in the DATA statements, and if they are wrong, you could crash 
the program. So save the program to disk or tape before running it. 

The next idea I got was to use multicolor characters on the screen, which 
I knew would be partly made up of border colors. This allows the scrolling 
colors to "show through" the characters where there is a bit that is in the 
border color. This is the technique used in "Rainbow Border." The PRINT 
statements in lines 30-45 can be replaced by whatever message you want. 
You can also stop the program and then type NEW. This leaves the machine 
language routine protected in the upper 256 bytes of memory on a VIC with 
the Super Expander cartridge, 3K RAM expansion, or standard memory. You 
can then do graphic work with the Super Expander or keyboard symbols and 
SYS 7424 to activate the color scroll. 

This is especially good for Super Expander programs in GRAPHIC 1. 
What you do is develop a nice graphic design program and then add lines 
10, 50, and 60 to call the routine to scroll the border colors. 

One other thing to make this more flexible: The screen and border range 
of colors is set by the second and thirteenth DATA numbers. These should 
be changed in increments of 16 to change the screen color. Also make sure 
you put the SYS 7424 after the design part of the program since the machine 
language routine doesn't return to BASIC. 

The third program, "S.X. Demo" is for the Super Expander. It is a 
demonstration of having the border colors "show through" the design. Note 

135 



Sound 
and Graphics 

that to use the border colors in the design, your design must be in GRAPHIC 
I, and the first number after CIRCLE, DRAW, and so forth, must be 1. This 
is a short and easy program to type in, but again be careful with the DATA 
statements. 

Program 1. Flag 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

213 PRINT" {CLR} {WHT}" ; :FORI=7424T07424+32 :READK: POKEI, K :NEXT 
:rem 197 

313 REM**TO DISABLE STOP KEY**:POKE 8138,11313 :rem 123 
413 POKE56,29:POKE52,29 :rem 252 
513 FORT=lT05 :rem 2313 
613 PRINT"{leJ SPACES}"; :rem 114 
713 PRINT"**********"; :NEXT : rem 144 
813 SYS7424 :rem 56 
913 DATA173,2,144,41,128,9,leJ,141,2,144,169,15eJ,141,3,144,1613, 

1136,1413 :rem 43 
11313 DATA15,144,162,137,2eJ2,2eJ8,253,136,192,leJ4,2eJ8,243,76,15, 

29 :rem 74 

Program 2. Rainbow Border 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

113 PRINT"{CLR}";:FORI=7424T07424+17:READK:POKEI,K:NEXT: 

213 POKE646,13:POKE56,29:POKE52,29:POKE36878,32 
25 REM ***POKE 8138,100 TO DISABLE STOP KEY*** 
313 PRINT"{CLR}{2 Dmm}{2 SPACESH+H3 SPACESH+H3 

{5 SPACESH2 +3" 
31 PRINT"{2 SPACESH+H3 SPACESH+H3 SPACESH+H4 

{2 SPACES}E+3" 
32 PRINT"{2 SPACESH+H3 SPACES}E+H3 SPACESH+H3 

" 
33 PRINT"{2 SPACES}E+3{3 SPACES}E+3{3 SPACES}E+3(3 

" 
34 PRINT"{2 SPACESH+H3 SPACES}E+H3 SPACESH+H3 

" 

:rem 252 
:rem 157 
:rem 153 

SPACESH+3 
: rem 39 

SPACESH+3 
:rem 115 

SPACES} E+3 
:rem 206 

SPACESH+3 
:rem 207 

SPACES}E+3 
:rem 208 

35 PRINT"{3 SPACES}E+3 E+3(4 SPACES}E+3(3 SPACES}g+3 
{3 SPACES}" :rem 209 

36 PRINT"{3 SPACESH+3 E+H4 SPACESH+H4 SPACESH+3 
{2 SPACES}g+3" :rem 120 

DO~m} II 37 PRINT"{4 SPACES}g+3{S SPACES}g+3(S SPACES}g2 +3(3 

38 PRINT" {5 SPACES }QQQ( 5 SPACES }QQQ" 
39 PRINT" {4 SPACES }g£3 SPACES }gC3"SPACES }g( 3 

413 PRINT" {8 SPACES }g{ 3 SPACES }Q( 3 SPACES }Q" 

136 

: rem 6 
:rem 34 

SPACES}Q" 
:rem 129 
: rem 168 



r 

41 
42 
43 
44 
45 
50 
60 

PRINT"{8 SPACES}Q{3 SPACES}Q{3 SPACES}Q" 
PRINT" {7 SPACES}O{4 SPACESr6{ 3 SPACES}O" 
PRINT" {6 SPACES}O{5 SPACES }O{ 3 SPACES}O" 
PRINT"{S SPACES}O{6 SPACES}O{3 SPACES}O" 
PRINT" {4 SPACES}OQQQQ{4 SPACES}QQQ" -
SYS7424 

Sound I 
and Graphics 

:rem 169 
:rem 170 
:rem 171 
:rem 172 
:rem 194 

:rem 53 
DATA160,111,140,15,144,162,136,202,208,253,136,192,103,208 
,243,76,0,29 :rem 42 

Program 3. S.X. Demo 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 GRAPHIC1:COLOR0,1,5,5 :rem 152 
20 FORX=0T0500STEP50 :rem 231 
30 CIRCLE1,511,511,511-X,X :rem 152 
40 NEXT :rem 163 
50 FORI=7424T07424+17:READK:POKEI,K:NEXT :rem 237 
60 DATA160,15,140,15,144,162,136,202,208,253,136,192,7,208,24 

3,76,0,29 :rem 160 
100 SYS7424 : rem 97 

137 



ze~~~ I Music Maker 
"Music Maker" will help you create music on your VIC. It requires at least 
8K of memory expansion. 

There are six parameters associated with making music. They are the 
four voices, the volume, and the duration. These six parameters make up a 
music set. By placing music sets one after another, you can create a com
position of music. Each music set takes six bytes of memory; therefore, you 
can have a lot of music on an expanded VIC. 

There are two programs used for creating, playing, and saving music. 
They are "Music Maker" and "Music Player." Music Maker allows you to 
create, edit, and play music sets. You can save music in a file and load it into 
memory for later use. Music Player contains the machine language routine 
and takes care of memory pointers. After you have created the music, you 
can combine this program with your own. 

I Music Maker 
In the main menu, you have eight choices. You can Add Music Sets, Edit 
Music Sets, Save Music, Load Music, Turn Music On, Turn Music Off, Erase 
Music, or Quit Program. 

Add Music Sets. The set number that you are adding is displayed. The 
first music set is set O. Below the displayed set number, all the sound param
eters are listed. These are voices 1-4, the loudness and duration of the set. 
After each question mark the previous value of that parameter is displayed. 
This makes entering the same values for the parameters easy. It also shows 
you what the previous sound set had. The four voices are in the form of ON, 
where 0 is the octave (1, 2, or 3) and N is the note. The note can be A-G 
plus sharps. The # symbol is used for sharps. No flats are allowed. If a voice 
is to be silent, then its value will be NN. All four voices start off with the 
value of NN. 

The loudness can be from 0 to 15. A value of 0 would mean there 
would be no sound heard. This is one way to create a rest in the music. If a 
value greater than 15 is typed in, it is changed to 15; a value of less than 0 is 
changed to O. The duration can be from 0 to 255. The number of seconds 
can be calculated by dividing this value by 60. A value of 0 would give the 
shortest duration (1/60 second), and 255 the longest (255/60, or approxi
mately 4.25 seconds). When entering values, you must press the RETURN 
key on each line. The cursor keys should not be used. After values for all the 
parameters are entered, you are asked if you are finished adding music sets. 
If you wish to enter another music set, press the RETURN key; otherwise, 
type a Y to return to the main menu. 

138 



Sound 
and Graphics 

Edit Music Sets. The edit mode has its own menu displaying seven 
functions: View/Change a Set, Playa Set, Play Composition, Step Com
position, Insert a Set, Delete a Set, and Quit Edit Mode. 

The View/Change a Set function allows you to look at a music set and 
change its parameters if you wish. After you type in a number for an existing 
set, the values of the parameters associated with that set are displayed. They 
are in the same format as they are in the Add mode. Type Y to change 
something, and the cursor is moved up to the top of the list. The set is re
entered, and the old set in memory is replaced with the new one. After the 
set is reentered, the screen is cleared, and you are asked for another set 
number. If you are through, type a negative number. 

The Playa Set function will let you hear how any set sounds. When 
asked for a set number, enter the number you wish; a negative number will 
return control to the edit menu. 

The Play Composition function plays all the music sets that you have 
created and displays the number of the set currently being played. 

The Step Composition function is similar to the Play Composition func
tion; however, after each set is played, you must press any key to hear the 
next set. 

Use the Insert a Set function to insert a new set anywhere in the com
position. Enter a valid set number. The new set will be inserted in the po
sition of the number you typed. The set that is currently in that position will 
shift to follow the new set. Type in the values for the new set. If you are 
through, type a negative number. 

Be careful using the Delete a Set function, for once a set is deleted, you 
cannot recall it. When you type in a set number, the values of the parameters 
of that set are displayed. Any sets that come after the one deleted are moved 
down to fill the gap. Once again, enter a negative number to return to the 
menu. 

The Quit Edit Mode function returns control to the main menu. 
Save Music. The music can be saved in a file on tape or disk. You are 

asked for the name of the file you wish to save the music under. If you don't 
wish to save the music, type STOP, and control is returned to the main 
menu. Otherwise, a file is opened under the designated name, and the music 
is saved. Control is returned to the menu after it is saved. 

Disk users should change the following lines: 
3400 OPEN l,8,2,N$+",S,W":PRINT#l,SS 
3520 OPEN l,8,2,N$:INPUT#l,SS 

Load Music. As with saving music, you are asked for the name of the 
file. Entering STOP returns control to the main menu. Type in the name of 
the file to load it. The proper file is then opened, and the set is loaded into 
memory. 

139 



Sound 
and Graphics 

Turn Music On. This changes the interrupt pointers to point to the mu
sic machine language routine. If you have any music sets in memory, they 
will be played after the time delay. After all the sets have been played, the 
silent period occurs again, and the music starts over. While the music is 
"on," you can add or edit the music. This allows you to hear the additions or 
changes as you make them. 

Turn Music Off. This changes the interrupt pointers back to their orig
inal values and turns off the music. 

Erase Music. If you want to start from scratch, use this function. It will 
erase any existing music sets in memory. You are asked if you are sure you 
want to do this. You must type YES to erase the music. 

Quit Program. This stops the program, but you are first asked if you are 
sure you want to end it. You must type YES to stop the program. If you 
want to get back into the program, type GOTO 3610 and control will be re
turned to the main menu. 

I Music Player 
The operation of this program is quite simple. It contains three machine lan
guage routines: the music routine, turn music off, and turn music on. If you 
use this routine in your program, turn the music on with SYS UN; to turn it 
off, type SYS OF. 

When you turn the music on, the time delay starts and the music starts 
playing with the first set. When you turn it off, the machine language routine 
stops executing and the sound registers are cleared. 

If you use this program as an introduction to your program, you'll need 
to know where the two machine language routines begin, since all variables 
are lost. Check the values of UN and OF before loading the second program. 

Disk users should change line 620 to 
620 OPEN 1,8,2,N$:INPUT#1,SS 

Program 1. Music Maker 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1140 GOT03900 
1150 REM 
1160 REM 
1170 REM *****n SUBROUTINES ****** 
1180 REM 
1190 REM 
1200 REM 
1210 REM *** DISPLAY SOUND SET *** 
1220 PRINT" {DOWN}" 
1230 FORX=IT04:PRINT"VOICE #"X"? ":N$(X) :NEXT 
1240 PRINT"LOUDNESS?"V:PRINT"DURATION?"D 

140 

:rem 203 
:rem 171 
:rem 172 

: rem 8 
:rem 174 
:rem 175 
:rem 167 

:rem 47 
:rem 167 
:rem 152 
:rem 142 



r 

1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 

1390 
1400 
1410 
1420 
1430 
1440 
1450 
1460 
1470 
1480 
1490 
1500 
1510 
1520 
1530 
1535 
1540 
1550 
1560 
1570 
1580 
1590 
1600 
1610 
1620 

1630 
1640 
1650 
1660 
1670 
1680 
1690 
1700 
1710 
1720 

Sound 
and Graphics 

RETURN :rem 168 
REM :rem 173 
REM *** INPUT SOUND SET *** :rem 175 
REM : rem 175 
FORX=IT04:PRINT"VOICE #"X: :INPUTN$(X) :NEXT :rem 229 
INPUT"LOUDNESS" :V:INPUT"DURATION": D : rem 137 
RETURN :rem 165 
REM :rem 170 
REM *** STORE SET IN MEMORY *** :rem 144 
REM : rem 172 
IFV> 15THENV=15 :rem 122 
IFV<0THENV=0 :rem 13 
POKEBS+SN*6,V :rem 61 
FORX=lT04:0$=LEFT$(N$(X),1):N$=RIGHT$(N$(X),LEN(N$(X))-1 
) : rem 30 
O=VAL(O$):IFO=00RO>3THENT=0:GOT01430 :rem 17 
FORY=lT012:IFM$(Y)=N$THEN1420 :rem 2 
NEXTY:T=0:GOT01430 :rem 148 
T=V«O-1)*12+Y) :rem 14 
POKEBS+SN*6+X,T:NEXTX :rem 140 
IFD+1> 255THEND=0 :rem 178 
IFD<lTHEND=l :rem 235 
POKEBS+SN*6+5,D+1 :rem 231 
RETURN :rem 172 
REM :rem 177 
REM *** PLAY SET *** :rem 208 
REM :rem 170 
P=PEEK(BS+SN*6):POKE36878,P:TM=TI :rem 53 
FORX=lT04:P=PEEK(BS+SN*6+X):POKE36873+X,P:NEXT :rem 185 
P=PEEK(BS+SN*6+5):TM=TM+P :rem 33 
IFTM>TITHEN1535 :rem 214 
RETURN :rem 170 
REM :rem 175 
REM *** GET SET FROM MEMORY *** :rem 133 
REM :rem 177 
V=PEEK(BS+SN*6):FORX=lT04:T=PEEK(BS+SN*6+X) :rem 219 
IFT=0THENN$ (X )="NN" :GOT01640 : rem 196 
FORY=lT036:IFT=V(Y)THEN1620 :rem 211 
NEXTY :N$ (X)="NN" :GOT01640 : rem 16 
N$(X)=STR$(INT«Y-1)/12)+1):N$(X)=RIGHT$(N$(X),1) 

N$(X)=N$(X)+M$(Y-INT«Y-1)/12)*12) 
NEXTX:D=PEEK(BS+SN*6+5)-1:IFD<0THEND=255 
RETURN 
REM 
REM *** GET HIGH AND LOW BYTE OF ADDRESS ** 
REM 
H=INT(A/256):L=A-H*256:RETURN 
REM 
REM *** TURN OFF SOUND *** 
REM 

:rem 190 
:rem 19 

:rem 215 
:rem 172 
:rem 177 
:rem 24 

:rem 179 
:rem 248 
:rem 172 
:rem 86 

:rem 174 

141 



Sound 
and Graphics 

1730 FORX=36878T036877:POKEX,0:NEXT:RETURN :rem 185 
1740 REM : rem 176 
1750 REM :rem 177 
1760 REM ****** ADD SOUND SETS ****** :rem 59 
1770 REM :rem 179 
1780 REM : rem 180 
17913 PRINT"{CLR}{2 SPACES}ADD SOUND SETS{2 DOWN}" :rem 232 
1800 PRINT"SET NUMBER":SS"{Dmm}" :rem 133 
18113 SN=SS : rem 78 
18213 REM : rem 175 
18313 REM * PRINT SET * :rem 125 
18413 REM : rem 177 
18513 GOSUB12213 :rem 19 
18613 REM : rem 179 
18713 REM * GET NEW SET * :rem 1913 
18813 REM :rem 181 
18913 PRINT"{HOME}{7 DOWN}": :rem 104 
191313 GOSUB12913 :rem 22 
19113 REM :rem 175 
1920 REM * STORE NEW SET IN MEMORY * :rem 215 
19313 REM :rem 177 
19413 GOSUB13513 :rem 23 
19513 SS=SS+1:FORX=13T05:POKEBS+SS*6+X,255:NEXT:INPUT"DONE ADDI 

NG {2 SPACES }N{ 3 LEFT}" :Y$ : rem 29 
19613 IFLEFT$(Y$,1)="N"THEN17913 :rem 168 
19713 GOT036113 :rem 212 
19813 REM :rem 182 
19913 REM :rem 183 
2131313 REM ****** EDIT SOUND SETS ****** :rem 1413 
213113 REM :rem 167 
213213 REM : rem 168 
20313 PRINT"{CLR}{3 SPACES}EDIT SOUND SETS{2 DOHN}" :rem 57 
213413 PRINT" V-VIEW/CHANGE A SET{DOWN}":PRINT" P-PLAY A SET 

{DOWN}" :rem 11313 
213513 PRINT" C-PLAY COMPOSITION{DOWN}":PRINT" S-STEP COMPOSITI 

ON{DOWN}" :rem 207 
2060 PRINT" I-INSERT A SET{OOWN}":PRINT" D-DELETE A SET{DOWN} 

" :rem 143 
21370 PRINT" Q-QUIT EDIT MODE{2 OOWN}":INPUT"{4 SPACES}CHOICE" 

:Y$:Y$=LEFT$(Y$,l) :rem 167 
213813 IFY$="V"THEN21913 :rem 168 
213913 IFY$="P"THEN2440 :rem 161 
211313 IFY$="C"THEN25913 :rem 146 
21113 IFY$="S"THEN27413 :rem 1613 
21213 IFY$="I"THEN29213 :rem 151 
2130 IFY$="D"THEN3140 :rem 142 
21413 IFY$="Q"THEN36113 :rem 158 
2150 GOT02030 :rem 198 
21613 REM :rem 173 
21713 REM *** VIEW SETS *** : rem 36 
21813 REM :rem 175 

142 



219121 

22121121 
221121 
222121 
223121 
2240 
225121 
2260 
227121 
2280 
229121 
23121121 
2310 
232121 
23.10 
234121 
235121 
236121 
237121 
238121 
239121 
240121 
2410 
242121 
243121 
244121 
245121 
246121 
247121 
248121 
249121 
25121121 
251121 
252121 
253121 
254121 
255121 
256121 
257121 
2580 
259121 
260121 
261121 
262121 
2630 
264121 
265121 
266121 
2670 
268121 

PRINT"{CLR} {2 SPACES}VIEWjCHANGE 
NUMBER" ~ SN :PRINT" {DOWN}" 

IFSN<elTHEN2el3el 
IFSN>=SSTHEN219121 
REM 
REM * GET SET FROM MEMORY * 
REM 
GOSUB158121 

Sound I 
and Graphics 

SETS [2 DOHN}": INPUT "SET 
:rem 92 
:rem 84 
:rem 17 

:rem 170 
:rem 216 
:rem 172 

: rem 23 
REM : rem 174 
REM * DISPLAY SET * :rem 5 
REM : rem 176 
GOSUB1220 :rem 18 
INPUT" {DOWN }CHANGE" ~Y$: IFLEFT$ (Y$, 1) <> "Y"THEN2190: rem 93 
REM :rem 17121 
REM * GET NEW SET * :rem 181 
REM :rem 172 
PRINT" {HOME} {8 DOHN}" ~ : rem 112 
GOSUB129121 :rem 22 
REM :rem 175 
REM * STORE SET IN MEMORY * :rem 237 
REM :rem 177 
GOSUB135121 :rem 23 
GOT0219121 :rem 21213 
REM :rem 171 
REM *** PLAY A SET *** 
REM 
PRINT"{CLR}{5 SPACES}PLAY A SET[2 DOHN}" 
INPUT"SET NUMBER"~SN 
IFSN<elTHEN2030 
IFSN>=SSTHEN244121 
REM 
REM * PLAY SET * 
REM 
GOSUB151121 
REM 
REM *** TURN OFF SOUND *** 
REM 
GOSUB173el:GOT02440 

:rem 11 
:rem 173 
:rem 179 

:rem 48 
:rem 92 
: rem 23 

:rem 178 
:rem 41 

:rem 171 
:rem 15 

:rem 173 
:rem 87 

:rem 175 
:rem 84 

REM :rem 177 
REM *** PLAY COMPOSITION *** :rem 56 
REM :rem 179 
PRINT"{CLR}{2 SPACES}PLAY COMPOSITION" :rem 190 
FORX=lT01000:NEXT :rem 82 
FORSN=0TOSS-l:PRINT"{HOME}f6 DOWN}SET NUMBER"7SN:rem 122 
REM :rem 174 
REM * PLAY SET * :rem 37 
REM :rem 176 
GOSUB1510 :rem 20 
REM :rem 178 
REM *** TURN OFF SOUND *** :rem 92 
REM :rem 180 

143 



Sound 
and Graphics 

2690 NEXT:GOSUB1730 :rem 149 
2700 FORX=lT01000:NEXT:GOT02030 :rem 139 
2710 REM :rem 174 
2720 REM *** STEP COMPOSITION *** :rem 59 
2730 REM :rem 176 
2740 PRINT" {CLR} {3 SPACES }STEP COMPOSITION{ 2 DOWN}" : rem 227 
2750 PRINT"PRESS ANY KEY TO HEAR{DOWN}":PRINT"THE NEXT SET" 

:rem 232 
2760 FORSN=0TOSS-l :rem 107 
2770 GETA$ :IFA$=" "THEN2770 : rem 195 
2780 PRINT"{HOME}{8 DOWN}SET NUMBER";SN :rem 206 
2790 REM :rem 182 
2800 REM * PLAY SET * :rem 36 
2810 REM :rem 175 
2820 GOSUB1510 :rem 19 
2830 NEXT :rem 12 
2840 GETA$:IFA$=""THEN2840 :rem 191 
2850 REM :rem 179 
2860 REM *** TURN OFF SOUND *** :rem 93 
2870 REM : rem 181 
2880 GOSUB1730:GOT02030 :rem 85 
2890 REM :rem 183 
2900 REM *** INSERT A SET *** :rem 173 
2910 REM :rem 176 
2920 PRINT"{CLR}{4 SPACES}INSERT A SET{2 DOWN}" :rem 85 
2930 INPUT"NEW SET NUMBER";SN:IFSN<0THEN2030 :rem 231 
2940 IFSN>=SSTHEN2920 :rem 28 
2950 REM :rem 180 
2960 REM * DISPLAY SET * :rem 11 
2970 REM : rem 182 
2980 GOSUB1220 :rem 24 
2990 REM : rem 184 
3000 REM * GET NEW SET * :rem 177 
3010 REM : rem 168 
3020 PRINT"{HOME}{6 DOWN}"; :rem 74 
3030 GOSUB1290 :rem 18 
3040 REM : rem 171 
3050 REM *** SET PARAMETERS FOR ML *** :rem 8 
3060 REM :rem 173 
3070 A=BS+SS*6+5:GOSUB1690:POKE830,L:POKE831,H :rem 237 
3075 A=BS+SN*6:GOSUB1690:POKE828,L:POKE829,H :rem 155 
3080 SYS UP :rem III 
3081 REM :rem 176 
3082 REM *** STORE NEW SET INTO MEMORY *** :rem 35 
3083 REM :rem 178 
3085 GOSUB1350 :rem 25 
3090 SS=SS+l :rem 177 
3100 PRINT"NEW SET INSERTED":FORX=lT01000:NEXT:GOT02920 

:rem 205 
3110 REM :rem 169 

144 



r 
I Sound I 

and Graphics 

3120 REM *** DELETE A SET *** 
3130 REM 

:rem 134 
:rem 171 

3140 PRINT"{CLR} DELETE A SET{2 DmJN}":INPUT"SET NUMBER" :SN 
:rem 205 

:rem 89 
:rem 18 

:rem 175 
:rem 221 
:rem 177 

3150 
3160 
3170 
3180 
3190 
3200 
3210 
3220 
3230 
3240 
3250 
3260 
3270 
3280 
3290 
3300 
3305 
3310 
3320 
3330 
3340 
3350 
3360 
3370 
3380 

3390 
3400 
3410 
3420 
3430 
3440 
3450 
3460 
3470 
3480 
3490 
3500 

3510 
3520 
3530 
3540 
3550 
3560 
3570 
3580 

IFSN<0THEN2030 
IFSN>=SSTHEN3140 
REM 
REM * GET SET FROM MEMORY * 
REM 
GOSUB1580 
REM 
REM * DISPLAY SET * 
REM 
GOSUB1220 
INPUT"OK TO DELETE":Y$:Y$=LEFT$(Y$,l) 
IFY$<>"Y"THEN3140 
REM 
REM *** SET PARAMETERS FOR ML *** 
REM 
A=BS+SN*6:GOSUB1690:POKE828,L:POKE829,H 
A=BS+SS*6+5:GOSUB1690:POKE830,L:POKE831,H 
SYS DOWN :PRINT "SET DELETED": SS=SS-l 
FORX=lT01000:NEXT:GOT03140 
REM 

: rem 19 
:rem 170 

:rem 1 
:rem 172 

:rem 14 
:rem 180 
:rem 229 
:rem 176 

:rem 13 
:rem 178 
:rem 146 
:rem 238 

:rem 13 
:rem 141 
:rem 173 

REM 
REM ****** SAVE MUSIC ON TAPE ****** 
REM 

:rem 174 
:rem 30 

:rem 176 
:rem 177 

DOWN} ":PRINT"NAME OF 
REM 
PRINT"{CLR}{3 SPACES}SAVE MUSIC {2 
(SPACE}FILE:" 
INPUTN$:IFN$="STOP"THEN3610 
OPENl,l,l,N$:PRINT#l,SS 
FORX=0TOSS:FORY=0T05 
P=PEEK(BS+X*6+Y) 
PRINT#! ,P 
NEXTY,X:CLOSEl:GOT03610 
REM 
REM 
REM ****** LOAD MUSIC FROM TAPE ****** 
REM 
REM 

:rem 31 
:rem 204 
:rem III 
: rem 124 
:rem 200 
:rem 39 

:rem 5 
:rem 176 
:rem 177 
:rem 169 
:rem 179 
:rem 180 

PRINT"{CLR}{2 SPACES}LOAD MUSIC{2 
ILE:" 

DOHN}":PRINT"NAME OF F 

INPUTN$:IFN$="STOP"THEN3610 
OPENl,1,0,N$:INPUT#1,SS 
FORX=0TOSS:FORY=0T05 
INPUTtl,P:POKEBS+X*6+Y,P 
NEXTY,X:CLOSEl:GOT03610 
REM 
REM 
REM ****** MAIN MENU ****** 

:rem 10 
:rem 198 
:rem 116 
:rem 127 
:rem 13 

:rem 7 
:rem 178 
:rem 179 

:rem 6 

145 



Sound 
and Graphics 

35913 REM :rem 181 
361313 REM :rem 173 
36113 PRINT"{CLR}{3 SPACES}MUSIC MAKER{Dmm}":PRINT"{6 SPACES} 

MENU { DOWN} " : rem 129 
3620 PRINT" A-ADD MUSIC SETS{Dmm}":PRINT" E-EDIT MUSIC SETS 

{ DOWN} " : rem 24 
36313 PRINT" S-SAVE MUSIC{DO\m}":PRINT" L-LOAD MUSIC{DOWN}" 

:rem 213 
36413 PRINT" O-TURN MUSIC ON{DOWN}":PRINT" F-TURN MUSIC OFF 

{DOWN}" :rem 198 
36513 PRINT" C-ERASE MUSIC{DOWN}" :rem 17 
3660 PRINT" Q-QUIT PROGRAM{Dmm}" :rem 138 
36713 INPUT"{3 SPACES}CHOICE":C$:C$=LEFT$(C$,l) :rem 51 
36813 IFC$="A"THEN17913 :rem 137 
36913 IFC$="E"THEN213313 :rem 1313 
371313 IFC$="S"THEN33813 :rem 145 
37113 IFC$="L"THEN351313 :rem 133 
37213 IFC$="O"THEN SYS UN :GOT036113 :rem 1613 
37313 IFC$="F"THENSYS OF :GOT036113 : rem 138 
37413 IFC$="C"THEN37913 :rem 138 
37513 IFC$="Q"THEN37713 :rem 151 
37613 GOT036113 :rem 211 
37713 INPUT"ARE YOU SURE":Y$:IFY$="YES"THENEND :rem 47 
37813 GOT036113 :rem 213 
37913 INPUT"ARE YOU SURE":Y$:IFY$="YES"THEN38113 :rem 38 
38013 GOT036113 :rem 2136 
38113 SS=13:FORX=BSTOBS+5:POKEX,255:NEXT:GOT036113 :rem 1 
38213 REM :rem 177 
38313 REM :rem 178 
38413 REM ****** PROGRAM START ****** :rem 81 
38513 REM : rem 1813 
38613 REM : rem 181 
38713 REM : rem 182 
38813 REM * STORE TOP OF MEMORY VALUE * :rem 118 
38913 REM :rem 184 
391313 X=PEEK(55):POKE91313,X:X=PEEK(56):POKE9131,X :rem 254 
39113 REM : rem 177 
39213 REM * SET NIDi TOP OF MEMORY * : rem 61 
39313 REM : rem 179 
39413 BS=128013:A=BS:GOSUB16913:BH=H:BL=L :rem 14 
39513 POKE55,BL:POKE51,BL:POKE56,BH:POKE52,BH:CLR :rem 216 
39613 BS=1281313:MS=PEEK(91313)+PEEK(9131)*256-236 :rem 143 
39713 DOWN=MS+1133:UP=MS+146:UN=MS+189:0F=MS+212:DU=613 :rem 146 
39813 FORX=BSTOBS+5:POKEX,255:NEXT:BS=BS-1 :rem 126 
39913 A=BS:GOSUB16913:SH=H:SL=L:A=MS:GOSUB16913:MH=H:ML=L:BS=BS+ 

1 :rem 189 
4131313 REM : rem 168 
413113 REM * LOAD MUSIC TABLES * :rem 89 
413213 REM : rem 1713 
413313 DIMV(36),M$(12):FORX=lT036:READV(X):NEXT :rem 195 
413413 FORX=lT012:READM$(X):NEXT :rem 11313 

146 



Sound 
and Graphics 

4050 REM :rem 173 
4060 REM * STORE MACHINE LANGUAGE PROGRAM IN MEMORY * :rem 80 
4070 REM :rem 175 
4080 FORX=MSTOMS+232:READA$:IFLEFT$(A$,l)<IA"THENPOKEX,VAL(A$ 

) :GOTO 4130 : rem 74 
4090 IFA$="SH"THENPOKEX,SH :rem 90 
4100 IFA$="SL"THENPOKEX,SL :rem 90 
4110 IFA$="ML"THENPOKEX, ML : rem 79 
4120 IFA$="MH"THENPOKEX,MH :rem 72 
4125 IFA$="DU"THENPOKEX, DU : rem 85 
4~3.0 NEXTX : rem 95 
4140 FORX=lT04:N$(X)=INN":NEXT :rem 56 
4150 GOT03610 :rem 205 
4160 REM : rem 175 
4170 REM * DATA FOR MUSIC VALUES AND NOTES * :rem 178 
4180 REM :rem 177 
4190 DATA135,143,147,151,159,163,167,175,179,183,187,191,195, 

199,201,203,207,209,212 :rem 131 
4200 DATA215,217,219,221,223,225,227,228,229,231,232,233,235, 

236,237,238,239 :rem 216 
4210 DATAC,C#,D,D#,E,F,F#,G,G#,A,A#,B :rem 165 
4220 REM :rem 172 
4230 REM * MACHINE LANGUAGE PROGRAM * : rem 82 
4240 REM :rem 174 
4250 DATA198,253,208,36,160,0,230,251,208,2,230,252,177,251 

:rem 133 
4260 DATA201,255,208,25,162,4,169,0,157,10,144,202,16,250 

:rem 24 
4270 DATA169,SH,133,252,169,SL,133,251,169,DU :rem 133 
4280 DATA133,253,76,191,234,141,14,144,230,251,208,2,230,252 

:rem 177 
4290 DATA177,251,141,10,144,230,251,208,2,230,252,177,251,141 

:rem 224 
4300 DATA11,144,230,251,208,2,230,252,177,251,141,12,144,230 

:rem 157 
4310 DATA251,208,2,230,252,177,251,141,13,144,230,251,208,2 

:rem 115 
4320 DATA230,252,177,251,133,253,76,191,234 :rem 122 
4330 REM :rem 174 
4340 REM * MOVE MUSIC SETS DOWN ROUTINE * :rem 88 
4350 REM :rem 176 
4360 DATA173,60,3,133,97,173,61,3,133,98,160,6,177,97:rem 119 
4370 DATA160,0,145,97,230,97,208,2,230,98,165,98,205,63 

:rem 217 
4380 DATA3,48,235,240,233,165,97,205,62,3,48,226,240,224,96 

:rem 153 
4390 REM :rem 180 
4400 REM * MOVE MUSIC SETS UP * :rem 156 
4410 REM :rem 173 
4420 DATA173,62,3,133,97,173,63,3,133,98,160,0,177,97:rem 114 

147 



Sound 
and Graphics 

4425 DATA160,6,145,97,165,98,205,61,3,208,8,165,97,205 
:rem 175 

4430 DATA60,3,208,1,96,198,97,16,2,198,98,208,225,240:rem 123 
4440 DATA223 :rem 125 
4450 REM :rem 177 
4460 REM * TURN MUSIC ON * :rem 109 
4470 REM :rem 179 
4475 DATA169,DU,133,253,169,SL,133,251,169,SH,133,252 :rem 21 
4480 DATA169,ML,141,20,3,169,MH,141,21,3,96 :rem 214 
4490 REM :rem 181 
4500 REM * TURN MUSIC OFF * :rem 166 
4510 REM :rem 174 
4520 DATA169,191,141,20,3,169,234,141,21,3 :rem 60 
4530 DATA162,4,169,0,157,10,144,202,16,250,96 :rem 211 

Program 2. Music Player 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

100 REM :rem 117 
110 REM : rem 118 
120 REM *****{2 SPACES}MUSIC PLAYER{2 SPACES}***** :rem 105 
130 REM : rem 120 
140 REM :rem 121 
150 REM * STORE TOP OF MEMORY VALUE * : rem 57 
160 REM :rem 123 
170 X=PEEK(55):POKE900,X:X=PEEK{56):POKE901,X :rem 202 
180 REM : rem 125 
190 REM * SET NEW TOP OF MEMORY * :rem 9 
200 REM : rem 118 
210 BS=12800:BH=INT{BS/256):BL=BS-BH*256 :rem 22 
220 POKE55,BL:POKE51,BL:POKE56,BH:POKE52,BH:CLR :rem 155 
230 BS=12800:MS=PEEK(900)+PEEK{901)*256-150 :rem 77 
240 UN=MS+103:0F=MS+126:DU=60 :rem 187 
250 BS=BS-l :rem 92 
260 SH=INT{BSj256):SL=BS-SH*256:MH=INT(MS/256):ML=MS-MH*256:B 

S=BS+l : rem 49 
270 REM :rem 125 
280 REM * STORE MACHINE LANGUAGE PROGRAM IN MEMORY * :rem 32 
290 REM :rem 127 
300 FORX=MSTOMS+146 :READA$: IFLEFT$ (A$, 1) < "A "THENPOKEX, VAL{A$) 

:GOTO 360 :rem 230 
310 IFA$="SH"THENPOKEX, SH : rem 33 
320 IFA$="SL "THENPOKEX,SL : rem 42 
330 IFA$="ML"THENPOKEX,ML :rem 31 
340 IFA$="MH"THENPOKEX,MH :rem 24 
350 IFA$="DU"THENPOKEX, DU : rem 33 
360 NEXTX :rem 48 
370 REM :rem 126 
380 REM * MACHINE LANGUAGE PROGRAM * :rem 36 

148 



Sound I 
and Graphics 

390 REM : rem 128 
400 DATA198,253,208,36,160,",230,251,208,2,230,252,177,251 

:rem 78 
410 DATA201,255,208,25,162,4,169,",157,10,144,202,16,250 

:rem 225 
420 DATA169,SH,133,252,169,SL,133,251,169,DU :rem 78 
430 DATA133,253,76,191,234,141,14,144,230,251,208,2,230,252 

:rem 122 
440 DATA177,251,141,10,144,230,251,208,2,230,252,177,251,141 

:rem 169 
450 DATAll,144,230,251,208,2,230,252,177,251,141,12,144,230 

:rem III 
460 DATA251,208,2,230,252,177,251,141,13,144,230,251,208,2 

:rem 69 
470 DATA230,252,177,251,133,253,76,191,234 :rem 76 
480 REM : rem 128 
490 REM * TURN MUSIC ON * :rem 60 
500 REM :rem 121 
510 DATA169,DU,133,253,169,SL,133,251,169,SH,133,252 :rem 215 
520 DATA169,ML,141,20,3,169,MH,141,21,3,96 :rem 157 
530 REM :rem 124 
540 REM * TURN MUSIC OFF * :rem 118 
550 REM :rem 126 
560 DATA169,191,141,20,3,169,234,141,21,3 :rem 12 
570 DATA162,4,169,0,157,10,144,202,16,250,96 :rem 163 
600 REM :rem 122 
603 REM * LOAD MUSIC FROM FILE * :rem 198 
605 REM :rem 127 
610 INPUT"FILE NAME":N$ :rem 89 
6200PENl,1,0,N$:INPUT#l,SS :rem 66 
630 FORX=0TOSS:FORY=0T05 :rem 77 
640 INPUT#1,P:POKEBS+X*6+Y,P :rem 219 
650 NEXTY,X:CLOSEI :rem 152 
670 REM :rem 129 
680 REM * PLACE MUSIC DATA HERE * :rem 250 
690 REM : rem 131 

149 





Chapter 
Four 

Applications 





F. Wendell I 
Johnson 

Write-On 
This is a word processor written in BASIC for the VIC with a Datassette and 
a serial printer (directions for adapting the program to print on a Com
modore printer are included below). It should adapt easily to almost any 
home computer since the only command unique to VIC-20 is the "Bell" in 
lines 90 and 91. This program is not well-suited to an unexpanded VIC be
cause available memory accommodates only about a dozen lines of text. 

In addition to providing for typing text into memory and sending it to a 
serial printer, the program allows the user to relocate blocks of text, edit 
lines, and have the computer find and change specific words or phrases. 

After the initial LOAD and RUN commands, the program goes first to a 
SET MARGIN routine to make sure the user established a line length. When 
this has been done, a one-line menu appears: 
A, C, D, E, F, I, L, M, P, Q, 5 

Each letter represents one of the program functions: ADD, CHANGE, DE
LETE, EDIT, and so on. A function is selected by pressing the key 
corresponding to the desired function. When this is done, the name of the 
function appears and the program awaits data from the keyboard relating to 
the function. 

ADD. Used for initial entry of text or for adding lines to text already en
tered. When A is selected from the menu, the program is immediately ready 
to accept the next line of text. The computer should be in the uppercase and 
lowercase mode if you want the output to be in that form. The lines will be 
numbered sequentially as they are entered, and a bell will signal when only 
five spaces remain on a line. More than one line on the screen may be 
needed to display one line of text. 

The @ key provides a five-space tab whenever it is used, and the RE
TURN key terminates a line. If the RETURN is used on an empty line, then 
the ADD function ceases and the menu reappears. The DELETE key func
tions normally in the ADD mode, but the CLR/HOME, INSERT, and cursor 
movement keys should not be used. An interesting peculiarity occurs when 
quotation marks are used. Any letter enclosed in quotes will be preceded by 
two graphics characters. These characters are not included in the line length, 
and they will not be listed or printed. They may be ignored. 

CHANGE. Directs the program to search through a specified range of 
lines of text and change wrong word to right one wherever it occurs. The 
range must be specified in this format: A, B RETURN, where A is the lowest 
numbered line of the range and B is the highest numbered line. The desired 
change must be in this format: / wrong word / right one / RETURN. Wrong 
word can be a letter, a word, or a phrase, and right one can be any of these 

153 



Applications 

or nothing (for example, / you know / / RETURN would result in the dele
tion of the phrase you know wherever it appeared). It may take several sec
onds for this operation to be completed, but the menu will reappear when it 
has finished. It will be necessary to LIST the text in order to see the result of 
CHANGE. Almost any letter or symbol may be used in the CHANGE format 
in place of the /. The only requirement is that the character used must not 
appear in either the field to be changed or the field which replaces it. 

DELETE. Causes a range of lines of text to be deleted. The range must 
be specified in this format: A, B RETURN, where A is the lowest numbered 
line to be deleted and B is the highest numbered line. If only one line is to 
be deleted, then A and B must be the same value. Failure to input two line 
numbers will result in another prompt (with two question marks). Input the 
second number and RETURN to proceed. The menu will reappear when DE
LETE is complete. 

EDIT. Recalls a specific line of text for editing. The number of the line 
must be specified in this format: A RETURN. This results in the display of 
the line to be edited along with a workspace for the editing. When the 
cursor-right key is pressed, the line to be edited is copied into the workspace 
one character at a time. A character to be changed is typed in from the key
board at the appropriate place on the line. A character to be deleted is 
copied, then deleted using the INST /DEL key. The line may then be com
pleted by continuing to copy. A character (or a space) may be inserted by 
copying over to the appropriate place, pressing the up arrow (not cursor up), 
and then typing the character to be inserted. The up arrow must be used 
before each character to be inserted. RETURN terminates both the line and 
the EDIT function bringing back the menu. 

FILER. Saves text or loads text from tape or disk into the program. 
LOAD or SAVE is specified by keying L or S. A filename must then be speci
fied with a name which does not exceed 12 characters. When saving is com
plete, the menu returns. Loaded text always starts with line 1. Disk users 
should change OPEN1,1,O,L$ in line 41 to OPEN1,8,2,L$. Also change 
OPEN1,1,1,L$ in line 43 to OPEN1,8,2,L$+",S,W". 

INSERT. Provides for the insertion of one or more lines of new text be
tween any two lines of existing text. The number of the line of existing text 
to be preceded by the new text is specified in this format: A RETURN. This 
results in the creation of a work area with a new line number. When the 
new line has been typed in, press the RETURN key to prepare for another 
new line. Pressing RETURN on an empty line terminates INSERT and re
stores the menu. 

LIST. Displays the text on the screen. A range of lines to be displayed 
may be specified in this format: A, B RETURN, where A is the lowest num
bered line of the range, and B is the highest numbered line. If you press RE
TURN without specifying a range, then all lines will scroll by and the menu 
returns. 

154 



Applications 

MOVE. Relocates a block of text. The range of lines in the block and the 
destination must be specified in this format: A, B, C RETURN, where A is 
the lowest numbered line of the range, B is the highest numbered line, and 
C is the line of text which will be preceded by the block when the move is 
complete. If the block is to be at the beginning of the text, C is specified as 1. 
If the block is to be at the end of the text, C is specified as one number 
higher than the last numbered line of text. The menu returns when the move 
is complete. 

PRINT. Sends a range of lines of text to the printer without printing the 
line numbers. The range of lines may be specified in this format: A, B, RE
TURN, where A is the lowest numbered line in the range and B is the high
est numbered line. If RETURN is pressed without specifying a range, then all 
lines will be printed. The menu returns when printing is complete. 

QUIT. Terminates "Write-On" and displays the space remaining in 
memory for lines of text. This is the only exception to the general rule that 
pressing RETURN restores the menu. The program may be restarted by the 
command CONT or RUN. The RUN command will erase all text in memory. 

SET MARGIN. Provides for specifying line length in this format: A RE
TURN. Margin will be evenly divided on either side of the page. Pressing 
RETURN without specifying the line length will default to a line length set
ting of 60 characters. The menu returns when RETURN is pressed. 

I Tailoring the Program 
The program may be readily modified to meet specific needs. Here are the 
locations of the various functions: 
1 Initialization 
2-4 Input Subroutines 
6-8 Menu 
10,11 ADD 
15-23 CHANGE 
25, 26 DELETE 
30-35 EDIT 
40-49 FILER 
55-57 INSERT 
60 LIST 
65-69 MOVE 
70-76 PRINT 
80 QUIT 
85 SET MARGIN 
90-95 Build Lines 

I designed the program to operate with my IDS Bright-Writer ASCII
compatible printer. If you have a Commodore printer, you may simplify the 
PRINT functions by deleting lines 71, 73, 74, changing L$ to T$(I) in line 75, 

155 



I Applications 

and shortening line 70 past the FOR I = L to H statement. You may also de
lete the OPEN 9,2,3 CHR$(6) from line I, add OPEN 9,4 to line 70, and add 
CLOSE 9 to line 76 before GOTO 6. 

Lines 1-11, 60, and 90-95 are the only lines absolutely necessary for the 
program to run. The others are options which you may include as you need 
them, modify as necessary, or replace with more powerful functions which 
you may design. 

Write-On 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

Some lines of this program require keywords to be abbreviated so that they will not exceed the four-screen-line 
limit. See Appendix B. 

1 OPEN9,2,3,CHR$(6):D1MT$(30):D$=CHR$(20):R$=CHR$(18):O$=CHR$ 
(146):Z=1:M=60:GOT085 :rem 107 

2 GETA$ :ON-(A$='"' ) GOT02 : RETURN :rem 55 
3 L=0:H=0:1NPUTL,H:ON-(L+H=0)GOT06:RETURN :rem III 
4 L=0:1NPUTL:ON-(L<10RL>Z)GOT06:RETURN :rem 31 
6 P=36875:E$=CHR$(255):X$=CHR$(157):PR1NTR$"A,C,D,E,F,1,L,M,P 

,Q,S"0$:GOSUB2 :rem 65 
7 J=0:FOR1=lT011:1FA$=M1D$("ACDEF1LMPQS",1,1)THENJ=1:1=11 

:rem 229 
8 NEXT1:ON-(J=0)GOT06:0NJGOT010,15,25,30,40,55,60,65,70,80,85 

:rem 185 
10 PR1NTK$:R$"ADD"O$:PR1NT :rem 85 
11 PR1NTZ">"::GOSUB90:0N-(LEN(L$)=0)GOT06:T$(Z)=L$:Z=Z+1:GOTO 

11 : rem 96 
15 PR1NTR$"CHANGE"O$::GOSUB3:GOSUB90:N=LEN(L$):1FN<4THEN15 

:rem 146 
16 A$=LEFT$(L$,l) :1FR1GHT$(L$,1)<>A$THEN15 :rem 115 
17 J=0:FOR1=2TON-1:1FM1D$(L$,1,1)=A$THENJ=1 :rem 66 
18 NEXT1:ON-(J=00RJ=2)GOT015:A$=M1D$(L$,2,J-2):1FJ+1=NTHENS$= 

"" : GOT020 : rem 186 
19 S$=M1D$(L$,J+1,N-J-1) :rem 254 
20 A=LEN(A$):FOR1=LTOH:B=LEN(T$(1»:L$="":S=l:FORJ=lTOB-A+1:1 

FM1D$(T$(1),J,A)<>A$THEN22 :rem 123 
21 L$=L$+M1D$(T$(1),S,J-S)+S$:S=J+A:J=S-l :rem 21 
22 NEXTJ:1FS<>lTHENL$=L$+R1GHT$(T$(1),B-S+1):T$(1)=L$:rem 115 
23 NEXT1:GOT06 :rem 150 
25 PR1NTR$ "DELETE "0$: :GOSUB3: 1FH=Z-l THENZ=L :GOT06 : rem 189 
26 J=H-L+1:FOR1=LTOZ-J-1:T$(1)=T$(1+J) :NEXT1:Z=Z-J:GOT06 

:rem 238 
30 PR1NTR$"ED1T"0$::GOSUB4:PR1NT:PR1NTL">"T$(L):PR1NTL">": :L$ 

="":1=1 :rem 201 
31 GOSUB2:1FA$=C$THENT$(L)=L$:PR1NT:GOT06 :rem 73 
32 ON-(A$<>CHR$(29»GOT033:A$=M1D$(T$(L),1,1):GOT035 :rem 168 
33 1FA$=D$THENL$=LEFT$(L$,LEN(L$)-l):PR1NTA$: :GOT031 :rem 83 
34 1FA$=CHR$(94)THEN:1=1-1:GOT031 :rem 196 
351=1+1:PR1NTA$::L$=L$+A$:GOT031 :rem 184 

156 



Applications 

413 PRINTK$iR$"FILER"O$" L OR S ?"i:GOSUB2:PRINTA$:S$=A$:IFS$< 
>"L"ANDS$<>"S"THEN6 :rem 173 

41 PRINT "NAME ?" i :GOSUB9f3:N=LEN(L$) :ON-(N<10RN>12)GOT041 :IFS$= 
"L"THENOPENl,l,f3,L$:Z=f3:GOT046 :rem 1135 

42 IFZ=1THENPRINT"NO FILE":GOT06 :rem 35 
43 OPENl,I,I,L$:FORI=ITOZ-l:FORJ=ITOLEN(T$(I» :PRINT#I,MID$(T 

$(I),J,I)i:NEXTJ :rem 138 
44 PRINT#I,E$i:NEXTI:CLOSEl:PRINTL$" SAVED":GOT06 :rern 83 
46 Z=Z+1:T$(Z)="" :rem 149 
47 GET#I,A$:ON-(ST=64)GOT049:IFST<>f3THENPRINT"LOAD ERROR"GOTO 

6 : rem 172 
48 ON-(A$=E$)GOT046:T$(Z)=T$(Z)+A$:GOT047 :rem 96 
49 CLOSEl:PRINTL$" LOADED":Z=Z+I:GOT06 :rem 1134 
55 PRINTR$"INSERT"O$i:GOSUB4:PRINTL">"i :rem 242 
56 GOSUB9f3:IFLEN(L$)<1THEN6 :rem 143 
57 Z=Z+1:FORI=ZTOLSTEP-l:T$(I)=T$(I-l) :NEXTI:T$(L)=L$:L=L+l:P 

RINTL">"i:GOT056 :rem 19 
613 L=I:H=Z-I:PRINTK$iR$"LIST"O$i:INP~TL,H:FORI=LTOH:PRINTI">" 

T$(I):NEXTI:GOT06 :rem 35 
65 PRINTR$"MOVE"O$i :INPUTL,H,A:B=A-l:J=H-L+l:IF(FRE(I)/M<J)TH 

ENPRINT"NO ROOM":GOT06 :rem 194 
66 N=Z-1:FORI=1TOJ:T$(N+I)=T$(L-l+I):NEXT :rem 214 
67 FORI=LTON-J:T$(I)=T$(I+J):NEXT:ON-(B=N)GOT069:IFB>LTHENB=B 

-J :rem 221 
68 FORI=NTOA+JSTEP-l:T$(I)=T$(I-J):NEXT:FORI=ITOJ:T$(B+I)=T$( 

N+I):NEXT:GOT06 :rem 15 
69 FORI=ITOJ:T$(N-J+I)=T$(N+I):NEXT:GOT06 :rem 32 
713 L=1:H=Z-I:PRINTR$"PRINT"O$i :INPUTL,H:FORI=LTOH:L$="":FORJ= 

IT099:A$=MID$(T$(I),J,I) :rem 229 
71 ON-(J>LEN(T$(I»)GOT075:N=ASC(A$):IF64<NANDN<91THENA$=CHR$ 

(N+32):GOT074 :rem 167 
73 IF192<NANDN<219THENA$=CHR$(N-128) :rem 81 
74 L$=L$+A$:NEXTJ :rem 219 
75 CMD9:PRINTSPC(E)L$:NEXTI :rem 238 
76 ON-(ST=f3AND(PEEK{37151)AND64)=I)GOT076:PRINT#9:GOT06 

:rem 84 
813 PRINTK$R$"GOODBY"O$:PRINTINT(FRE(8)/M)"LINES FREE":STOP:GO 

T06 :rem 68 
85 K$=CHR$(147):PRINTK$iR$"MARGIN"O$i:C$=CHR$(13) :INPUTM:E={8 

f3-M)/2:GOT06 :rem 66 
913 L$="": IF (FRE( 1 ) /M< 2) THENPRINT "NO ROOM" :GOT06 : rem 64 
91 PRINTCHR$ (166) i :GOSUB2 :IFA$=C$THENPRINTX$ i" ": RETURN 

:rem 176 
92 IFA$="@"THENA$="{5 SPACES}" :rem 53 
93 PRINTX$iA$i:IFA$=D$THENL$=LEFT$(L$,LEN(L$)-1):GOT091 

:rem 22 
94 IFLEN(L$)=M-5THENPOKEP,238:FORI=15T01STEP-1:POKEP+3,I:NEXT 

:rem 127 
95 POKEP,f3:L$=L$+A$:GOT091 :rem 13 

157 



Mendel;~~~ I VIC Marquee 

The "VIC Marquee" will run on an unexpanded VIC and provides a moving 
billboard message across the top of the screen. The beauty of this marquee 
utility is that the moving display is generated as a wedge during the screen 
interrupt processing. This allows the main user program to be performing 
one task while the marquee is generated essentially as a background opera
tion. The demonstration program combines simple animation with a marquee 
message. 

The marquee subroutine is a machine language program which is 
POKEd into the cassette buffer using a BASIC loader. 

I Storing Strings 
The VIC uses two techniques for storing string information. Strings which 
are defined as constants either by DATA statements or by declarations such 
as A$ = "MESSAGE" are saved in the program area. However, strings which 
are used in or formed by operations such as concatenation are saved in the 
string storage area. The start of this string area is stored in low byte/high 
byte form at locations 51 and 52, respectively. This method of string storage 
permits the user to create messages and generate marquees with a simple 
three-step procedure: 

1. Form the message string by concatenation. It must terminate with a 
CHR$(O). 

2. Provide the location of the message to the marquee program by transfer
ring the data in locations 51 and 52 to locations 1011 and 1009, 
respectively. 

3. Initiate the marquee by a SYS 1008. 

I Marquee Demo 
The program "Marquee Demo" employs this technique to create a marquee 
display while an animated stick figure performs jumping jacks. The next 
paragraph discusses key elements of the program. 

Line 5 clears the screen at program initialization. Line 11 sets the color 
memory of the first screen row to blue. In order for the marquee to be vis
ible, it is necessary that the color be changed from white. Lines 21-24 set 
string data which will be used in composing the messages. As discussed pre
viously, these strings are stored in the program area. Line 30 calls the sub
routine which reads the machine language marquee program and POKEs it 
into memory. Line 41 creates the marquee message M$ by concatenation. 
The statement X = FRE (0) is included to make the VIC perform string gar
bage collection. This operation removes A$ and B$ from the string storage 

158 



,--------

Applications I 
area reducing memory usage. Line 42 calls the subroutine which POKEs the 
string location pointer into the marquee memory. Line 50 starts the marquee, 
while line 60 calls the subroutine which has an animated figure perform 50 
jumping jacks. Line 61 performs a HOME so that when the jumping figure 
routine is called again, the animated figure will be properly positioned. Lines 
71-90 duplicate the functions of lines 41-60. 

This program scrolls your message across the top of the screen during 
the IRQ interrupt, the time during which your computer is processing key
board input and other necessary tasks. The IRQ interrupt normally occurs 
every 1/60 second. Marquee adds a routine to be processed during this inter
rupt, independent of the BASIC program. In fact, if you press RUN/STOP, 
your message will continue to scroll across the screen while you modify the 
program. Adding a routine to the IRQ also causes the length of time needed 
to process the IRQ to be increased slightly. 

This increase in time for IRQ processing can cause a slight increase in 
the execution time of a program. However, this routine will slow your BASIC 
program down by less than 2/10 second when using the unexpanded VIC. 

To test this yourself, enter 
99 PRINT "THIS IS THE END." 

Then run the program while measuring the length of time from typing RUN 
until "THIS IS THE END." appears on the screen. Then delete lines 50 and 
80, which call the Marquee routine, and time the program again. It may be 
necessary to make several test runs to obtain accurate timing. 

The internal timer (TI$) can't be used, as it is updated during the IRQ 
interrupt. For more information on using interrupts in your programs, see 
Programming the VIC, by Raeto Collin West, from Compute! Books. 

Marquee Demo 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

Some lines of this program require keywords to be abbreviated so that they will not exceed the four-screen-line 
limit. See Appendix B. 

5 PRINT" {CLR}" 
10 REM COLOR FOR MARQUEE 

:rem 153 
:rem 187 

:rem 5 11 FORI=0T021:POKE38400+I,6:NEXTI 
20 REM MARQUEE MESSAGE STORAGE 
21 A$="THIS MESSAGE IS DISPLAYED WITHOUT REALLY 

{SPACE} THE JUMPING MAN VERY MUCH." 

:rem 112 
SLOWING DOWN 

:rem 145 
OR VARIO 22 B$="{2 SPACES}THIS TECHNIQUE CAN BE USED IN GAMES 

US READING EXERCI SES. " 
23 C$="ANY SORT OF MESSAGE CAN BE PRINTED AS LONG AS 

AGE IS LESS THAN 255" 
24 D$=" CHARACTERS, INCLUDING THE CHR$(0) AT THE END 

ESSAGE." 
30 GOSUB800:REM MARQUEE LOADER 

:rem 84 
THE MESS 

:rem 94 
OF THE M 

:rem 81 
:rem 96 

159 



Applications 

40 REM SET-UP FIRST MARQUEE MESSAGE 
41 M$=A$+B$+CHR$(0):X=FRE(0) 
42 GOSUB2000 
50 SYS1008:REM STARTS MARQUEE 
60 GOSUB200:REM JUMPING MAN 
61 PRINT" {HOME}" 
70 REM SET-UP SECOND MARQUEE MESSAGE 
71 M$=C$+D$+CHR$(0):X=FRE(0) 
72 GOSUB2000 
80 SYS1008:REM STARTS MARQUEE 
90 GOSUB200:REM JUMPING MAN 
100 END 
200 REM THIS PROGRAM IS A JUMPING MAN 
205 PRINT:PRINT:PRINT" {RED}" 
210 FORM=lT050 
215 PRINT"{9 SPACES}MWN{2 SPACES}" 
220 PRINT" {10 SPACESffiH3 SPACES}" 
225 PRINT"{9 SPACES}N M{2 SPACES}" 
230 FORT=lT0300:NEXTT -
235 PRI NT " {4 Up}" 
240 PRINT"{10 SPACEShl{3 SPACES}" 
245 PRINT"{9 SPACES}NI+jM{2 SPACES}" 
250 PRINT"{10 SPACESTE2 "GH2 SPACES}" 
255 FORT=lT0300:NEXTT 
260 PRINT"{4 Up}" 
265 NEXTM 
270 PRINT" {BLU} {4 oomn" 
275 RETURN 
800 REM MARQUEE BASIC LOADER 
801 FORAD=864T01015:READ D:POKEAD,D:NEXTAD 
864 DATA22,0,15,191,234,7 
870 DATA15,22,160,1,185,0 
876 DATA30,153,255,29,200,204 
882 DATA96,3,208,244,32,161 
888 DATA3,205,97,3,240,15 
894 DATA192,255,240,11,200,140 
900 DATA101,3,172,96,3,153 
906 DATA255,29,96,172,96,3 
912 DATA169,32,153,255,29,238 
918 DATA103,3,173,103,3,205 
924 DATA96,3,176,48,96,172 
930 DATA101,3,177,0,41,191 
936 DATA96,141,0,0,142,1 
942 DATA0,169,0,141,103,3 
948 DATA141,101,3,173,20,3 
954 DATA141,99,3,173,21,3 
960 DATA141,100,3,120,169,223 
966 DATA141,20,3,169,3,141 
972 DATA21,3,B8,96,120,173 
978 DATA99,3,141,20,3,173 

160 

: rem 163 
:rem 227 
: rem 168 

:rem 60 
:rem 140 

:rem 75 
: rem 218 
:rem 234 
:rem 171 

:rem 63 
:rem 143 
:rem 104 
:rem 153 

: rem 1B 
:rem 61 

:rem 219 
:rem 11 

:rem 5 
:rem 65 

:rem 175 
: rem 62 

:rem 173 
:rem 178 

: rem 72 
:rem 173 

:rem 41 
:rem 205 
:rem 126 
:rem 165 
:rem 68 

:rem 253 
:rem 245 
:rem 198 
:rem 107 

: rem 7 
:rem 242 

:rem 41 
:rem 71 

:rem 212 
:rem 88 
:rem 74 
:rem 38 

:rem 197 
:rem 242 

:rem 38 
:rem 4 

:rem 185 
:rem 47 
: rem 59 
:rem 9 



984 DATA100,3,141,21,3,88 
990 DATA96,206,102,3,16,9 
996 DATA32,104,3,173,98,3 
1002 DATA141,102,3,108,99,3 
1008 DATA162,3,169,62,32,169 
1014 DATA3,96 
1016 RETURN 
2000 REM MARQUEE MESSAGE LOCATION GENERATOR 
2030 POKE1009,PEEK(52) 
2040 POKE1011,PEEK(51) 
2060 RETURN 

Applications I 
:rem 251 

: rem 5 
:rem 10 
:rem 83 

:rem 152 
:rem 174 
:rem 168 
:rem 187 
:rem 199 
:rem 192 
:rem 168 

161 



s~~~~ I Message Board 
With "Message Board" and an unexpanded VIC, you'll be able to create mes
sages of up to 212 characters that will scroll across the top of the screen. Since 
Message Board is driven by the interrupt routine, it can run the message in
dependently of any other program or programming that may be going on. 

When you run this program, you will be asked to give a stop code that 
will signal the end of your message entry and start the display. You should 
then carefully enter your message and the stop code. You can delete and 
backspace with the INST /DEL key while entering the message. If you have 
done everything right up to this point, the screen will clear, a READY 
prompt will appear, a blinking cursor will show on the screen, and your 
message should be "marching" across the top of the screen. If you have all 
of these things including asterisks (*) before and after your message, then 
you have done it all correctly. 

If, instead, you have a VIC that is acting peculiarly, you probably have 
an error in the DATA statements that causes a problem in the machine lan
guage routine. Of course, you should always save a program that you have 
just typed in before you run it. Then you can recover from a crashed com
puter by powering down and then reloading to hunt for errors. The most 
likely reason for a crash or malfunction in the program would be incorrect 
DATA statements. Check them closely. 

On the other hand, if the program has worked, you can now either type 
NEW and go on with other things or rerun and enter a new message. Either 
way, the old message will continue to move across the screen. You can ac
tually watch it change as you enter the new message. But it will not be com
plete until you enter the stop code. 

Hitting RUN/STOP-RESTORE will stop the message, but won't get rid 
of the machine language routine. It is protected along with your message in 
the top 335 bytes of RAM. To restart the message, just type SYS 7345 and 
press RETURN. 

Programs which cause the screen to scroll may sometimes cause strange 
things to happen to the message. Furthermore, other programs that use the 
interrupt routine will cause problems. The message will also pause after a 
LIST or a STOP during another program's execution, but it has always 
started back after any of these pauses. 

One more comment about problems that you may have entering the 
program: Be very sure to get lines 4, 12, and 13 right since the success of 
entering your message depends upon these lines. 

162 



Applications I 
Message Board 
For mistake-proof program entry, be sure to use 'The Automatic Proofreader," Appendix C. 

2 POKE56,28:POKE55,176:REM ** MEMORY POKES I I ** :rem 98 
3 FORH=7345T07419:READA:POKEH,A:NEXT :rem 24 
4 I=7424:D=128:DEFFNA(K)=(KANDD)!20R(KAND63)-(K>DANDK<1930RK< 

320RK=95)*D :rem 249 
5 DN$="{HOME}{21 DOWN}":M$="{CLR}{RVS}{RED} ** MESSAGE 

{2 SPACES}BOARD ** {OFF}{BLU}" :rem 151 
6 PRINTM$:GOSUB18 :rem 87 
7 PRINTM$" {DOWN}ENTER A CHARACTER TO{ 2 SPACES}{ DOWN} BE USED A 

S AN END OFf 2 SPACES} {DOWN}MESSAGE CODE. NOT * I" :rem 108 
8 INPUTST$:IFST$="*"THEN7 :rem 56 
9 FORJK=ITOI+22:POKEJK,170:NEXT:I=I+22 :rem 137 
10 P RINTM$" { DOWN} STOP CODE IS {SHI FT- SPACE} "ST$ : PRINT" { DOWN} EN 

TER MESSAGE" : rem 187 
11 GETN$:ON-(N$="")GOTOll:IFN$=ST$THEN15 :rem III 
12 IFN$="{DEL}"THENPRINTN$"{RVS} {OFF} {2 LEFT}"~:M=M-l:GOTOl 

1 :rem 200 
13 PRINTN$" {RVS} {OFF} {LEFT}" ~ :POKEI+M, FNA(ASC (N$» OR128 :M=M+ 

1:IFM=212THEN17 :rem 97 
14 GOTOll :rem 0 
15 FORJK=MTOM+22:POKEI+JK,170:NEXT :rem 154 
16 POKE0 ,M+22 :SYS7 345 :PRINT" {CLR} {RED} {RVS} {22 SPACES} {OFF} 

{BLU}":END :rem 104 
17 PRINT"MESSAGE TOO LONG I ":SYS7345:END :rem 158 
18 PRINTDN$"{4 SPACES}PRESS{2 SPACES}ANY KEY":GETA$:ON-(A$="" 

)GOT018:RETURN :rem 196 
19 DATA120,169,3,160,22,153,255,149,136,192,0,208,248,234 

:rem 43 
20 DATA169,213,141,20,3,169,28,141,21,3,169,0,133,255,133,1,1 

69,29,133,2,88,96,230,255 :rem 182 
21 DATA165,255,201,10,208,28,160,0,177,1,153,0,30,200,192,22, 

208,246,230,1,165,1,197 :rem 52 
22 DATA0,208,4,169,0,133,1,169,0,133,255,76,191,234 :rem 244 

16~ 





Chapter 
Five 

Sports 
Games 





AdC6~ I Strike Three 
"Strike Three' is, as you have probably guessed, a baseball game for the un
expanded VIC-20. This program will also run with a 3K expander. However, 
it will not run with any other memory expansions unless some modifications 
are made to all variables which reference a screen address. There are many 
of these variables, but they should not be hard to find. If you do not want to 
make these changes, just remove your expander (8K or 16K). 

If you have an un expanded VIC, type in the following line instead of 
lines 82-105: 
82 GOTO 118 

Also, you can delete line 57 if you still do not have enough memory on the 
standard VIC. If you do have a 3K expander, just type in the entire listing as 
shown. 

I Playing Strike Three 
Once the program is run, a baseball diamond will appear on the screen. The 
usual baseball indicators, balls, strikes, and so forth, are shown at the bottom 
of the screen. SCI stands for the first player's score, while SC2 is for player 
2. You'll also notice another indicator displayed as RUNS. This category 
continuously shows the number of runs being scored in an inning. When a 
player finishes his or her half of the inning, RUNS will revert back to zero 
and start counting again for the other half of the inning. 

Players choose who starts at bat. The player who pitches will use the 
period, comma, and slash keys: 
KEY Pitch 

curve 
, change up 
/ straight 

When selecting a pitch, you may have to hit the key twice. The execution of 
the game may sometimes run a little slower than your selection. 

After the pitch, the player at bat will use the space bar to swing the bat. 
If the batter misses the ball or lets it go by the plate with no swing, it is 
counted a strike. If the batter lets the ball go by on a curve pitch, it is 
counted a ball. Naturally, when any of these conditions exist, the indicators 
at the bottom will be updated. If the player hits the ball, you will see it go 
across the field to a somewhat random location. 

As the ball is hit, the player who is pitching takes over. He or she will 
use the period key to move the fielder (the ball characters) right and the 
comma key to move the fielder left. 

167 



I Sports Games 

Because of the interaction between pitching and hitting, both players 
should hit their keys with a sort of tap. In other words, don't hold a key down 
as this could interfere with the other player. There are two exceptions to this 
rule: when a player is moving fielders and when a player is throwing the 
ball from the outfield. (The second exception applies only to the 3K ex
panded version of the game.) 

As you are moving fielders, try to intercept the ball that has been hit. If 
you do intercept it, your fielder will turn red and you will have one out on 
the opposing player. If the ball is not caught, then it will turn red, either on 
the field or on the screen border, and the opposing player will advance to 
first base. Any other players already on base will also advance (this routine 
is also executed if a batter walks (takes four balls). 

I Expanded Version 
Since we have a little extra memory in an expanded VIC, I've included a few 
extra features. As mentioned above, the listing as shown is the expanded 
version. Anyone with a standard VIC should delete lines 82-105 and insert a 
new line 82. The instructions for the "3K added" game are the same as for 
the other version except that the routine from 82 to 105 adds an extra feature 
to the game. 

The period and comma keys are used to select a pitch, move fielders, 
and throw the ball. In the other version, you could not throw the ball. Here's 
how it works: When the ball is hit, the pitcher tries to move the fielders to 
intercept it. If the pitcher succeeds, the fielder turns red and an out is 
registered. 

Now there is a slight time delay (this delay can be changed by changing 
the value of TI$). If the hitter does not have any players on base, just wait 
out the delay, and the routine between 82 and 105 is not used. If the hitter 
does have players on base, then the player at bat can still wait out the delay 
or can try to advance the players one base. This is done by pressing the 
space bar (don't hold it down). After this is done, the ball will leave the 
fielder who has caught it and will begin to move across the field. Again, this 
movement is controlled by the pitcher with the period and comma keys. As 
the ball moves, the pitcher should try to guide it to second, third, or home 
base. If it hits one of these three bases, the word OUT appears on the screen, 
and the player who would have made it to that base disappears. 

I should also mention that this routine executes only if the fielder that 
caught the ball is an outfielder, not an infielder. Naturally, in real baseball, 
no one tries to advance on an infield fly. 

168 



Sports Games I 
Strike Three 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

o CL=30720:S3=36876:S4=36877:S5=36878 :rem 31 
1 Jl=1:J2=-I:J3=23:J4=21:01=7772:02=7734:03=7784:0T=0:RN=0:GO 

T039 :rem 250 
2 SS=0:BA=0:POKES3,210 :rem 29 
3 POKEBL,32:C=0:FORT=IT07 :rem 40 
4 FORX=ITOR :rem 214 
5 BL=BL+Dl : rem 46 
6 IFPEEK(197)=37THEN02=02+Jl:0l=Ol-J4 :rem 185 
7 IFPEEK(197)=37THENll=Il-J4 :rem 143 
8 IFPEEK(197)=29THEN02=02-Jl:0l=Ol+J4 :rem 188 
9 IFPEEK(197)=29THENll=Il+J4 :rem 144 
10 IFPEEK(BL)=93THENC=2:T=7:X=R:GOTOI5 :rem 122 
11 POKEBL,124:POKEOl,81:POKE02,81:POKE03,81:POKEll,81:POKEI2, 

81 :rem 80 
12 IFBL=020RBL=OITHENOT=OT+l:T=7:X=R:C=I:GOTOI5 :rem 31 
13 IFBL=IITHENOT=OT+I:T=7:X=R:C=3:GOTOI5 :rem 47 
14 POKE02,32:POKEOl,32:POKEBL,32:POKEll,32:POKES3,0 :rem 103 
15 NEXT:IFT=7THENI8 :rem 206 
16 BL=BL+D2:POKEBL,124:POKEBL,32:IFOl>7856THENOl=7878:rem 206 
17 IFBL=OITHENOT=OT+l:T=7:C=1 :rem 61 
18 NEXT:POKES3,210:FORT=IT030:NEXT:POKES3,0:IFC=0THENI06 

:rem 66 
19 ONCGOT081,106,117 :rem 116 
20 SS=0:BA=0:POKES3,210 :rem 77 
21 POKEBL,32:C=0:FORT=IT07 :rem 88 
22 FORX=ITOR :rem 6 
23 BL=BL+Dl : rem 94 
24 IFPEEK(197)=37THEN02=02+Jl:03=03+J3 :rem 234 
25 IFPEEK(197)=37THENI2=I2+23 :rem 166 
26 IFPEEK(197)=29THEN02=02-Jl:03=03-J3 :rem 241 
27 IFPEEK(197)=29THENI2=I2-23 :rem 171 
28 lF03>7877THEN03=7899 :rem 101 
29 POKES3,0:IFPEEK(BL)=93THENC=2:T=7:X=R:GOT034 :rem 208 
30 POKEBL,124:POKEOl,81:POKE02,81:POKE03,81:POKEI1,81:POKEI2, 

81 : rem 81 
31 IFBL=020RBL=03THENOT=OT+l:T=7:X=R:C=1:GOT034 :rem 35 
32 IFBL=I2THENOT=OT+l:T=7:X=R:C=3:GOT034 :rem 50 
33 POKE02,32:POKE03,32:POKEBL,32:POKEI2,32 :rem 32 
34 NEXT:IFT=7THEN37 :rem 208 
35 BL=BL+D2:POKEBL,124:IF03>7899THEN03=7921 :rem 71 
36 IFBL=030RBL=02THENOT=OT+l:T=7:C=1:GOT037 :rem 10 
37 POKEBL,32:NEXT:POKES3,210:FORT=IT030:NEXT:POKES3,0:IFC=0TH 

EN106 :rem 203 
38 ONCGOT081,106,117 :rem 117 
39 PRINT I {CLR}{BLK}":POKE36879,93:POKES5,15 :rem 245 
40 R=INT«RND(I)*5)+1):OI=7794:02=7735:03=7808:IFOT>=3THEN122 

: rem 239 

169 



Sports Games 

41 POKEB109,32:GOSUBl19 :rem 76 
42 Bl=B005:B2=7B67:B3=7993:HP=B131:Il=7907:12=7915:PT=799B 

:rem 21B 
43 FORJ=7BBBT07972STEP21:POKEJ,7B:NEXT :rem 150 
44 FORJ=7B90T079B2STEP23:POKEJ,77:NEXT :rem 146 
45 FORJ=7921TOBl10STEP21:POKEJ,7B:NEXT :rem 125 
46 FORJ=7B78T0810BSTEP23:POKEJ,77:NEXT :rem 145 
47 POKEBl,160:POKEB2,160:POKEB3,160:POKEHP,160 :rem 213 
4B POKEBl+CL,6:POKEB2+CL,6:POKEB3+CL,6:POKEHP+CL,6 :rem 5B 
49 POKEOl,Bl:POKE02,81:POKE03,Bl:POKEll,Bl:POKEI2,Bl :rem 161 
50 POKEB130,103:POKE7999,10B:FORT=lT0500:NEXT :rem 196 
51 FORT=76B0T07723:POKET,93:NEXT :rem 247 
52 FORT=7701T07899STEP22:POKET,93:NEXT :rem 160 
53 FORT=76B0T07B56STEP22:POKET,93:NEXT :rem 160 
54 BL=7999+22:FORT=1T010:GETB$:NEXT :rem 133 
55 GETA$:IFA$=""THEN55 :rem 247 
56 Bl=124:B2=10B:D=22:IFA$="."THENBl=126:B2=108:D=23 :rem 7B 
57IFA$<>"/"ANDA$<>"."ANDA$<>","THEN55 :rem 44 
5B FORJ=lT03:BB=124:POKEBL,BB:FORG=IT05 :NEXT:POKEBL,32:BB=10 

B:POKEBL,BB :rem 5 
59 FORG=lT05 :NEXT:POKEBL,32:BL=BL+22:POKES3,210-2*J:NEXTJ 

:rem 73 
60 IFPEEK(197)=32 THEN67 :rem 74 
61 IFA$=", "THENFORT=l T0250 :NEXT : rem 147 
62 BL=BL+D:POKEBL,Bl:BB=I:FORG=lT05 :NEXT:POKES3,202-Q:IFPEEK 

(197)=32THEN67 :rem 100 
63 POKEBL,32:POKEBL,B2:FORG=lT05 :NEXT:BB=2:Q=Q+2 :rem 24 
64 IFPEEK(197)=32 THEN67 :rem 7B 
65 POKEBL,32:IFBL>BIB5THEN77 :rem 193 
66 GOT062 :rem 13 
67 POKEB131,77:POKES3,0:Q=0:FORJ=lT05:NEXT :rem 112 
6B POKE8131,99:FORJ=lTOI0:NEXT:POKE8131,32 :rem 37 
69 POKEB109,7B:FORJ=lTOI0:NEXT :rem 97 
70 POKEB109,101 :rem 3B 
71 IFBL=B131ANDBB=lTHENDl=-21:D2=-22:GOT020 :rem 24 
72 IFBL=B109ANDBB=2THENDl=-22:D2=-21:GOT020 :rem 31 
73 IFBL=B0B7THENDl=-22:D2=-23:GOT02 :rem 49 
74 IFBL=8109ANDBB=lTHENDl=-23:D2=-22:GOT02 :rem 242 
75 FORT=lT02000:NEXT:POKEBL,32:SS=SS+1:IFSS=3THENSS=0:BA=0:0T 

=OT+l :rem 254 
76 GOT040 :rem 10 
77 POKES3,0:Q=0:IFD=22THENSS=SS+I:IFSS=3THENSS=0:BA=0:0T=OT+l 

:GOT040 :rem 116 
7B IFD=22THEN40 :rem 118 
79 BA=BA+l:IFBA=4THENBA=0:SS=0:GOTOI06 :rem 66 
80 GOT040 : rem 5 
Bl POKEBL+CL,2:POKEBL,81 :TI$="000000":IFOT=>3THEN40 :rem 19 
82 IFPEEK(197)=32THENBB :rem Bl 
B3 IFTI$>"000005"THEN104 :rem 3B 
84 IFBL=OlTHENX=23:Y=-1:Z=-22 :rem 255 
B5 IFBL=02THENX=22:Y=-1:Z=1 :rem 160 

170 



Sports Games 

86 IFBL=03THENX=21:Y=-22:Z=1 :rem 212 
87 GOT082 :rem 18 
88 Dl=32:D2=32:D3=32:Cl=7983:C2=7866:C3=8015 :rem 116 
89 IFPEEK(8006)=87THENDl=87 :rem 64 
90 IFPEEK(7845)=87THEND2=87 :rem 67 
91 IFPEEK(7992)=87THEND3=87 :rem 72 
92 POKE8006,32:POKE7845,32:POKE7992,32 :rem 160 
93 FORE=lT06:POKECl,Dl:POKEC2,D2:POKEC3,D3:POKES4,240 :rem 17 
94 FORF=lT03:BL=BL+X:POKEBL,124:FORG=lT020:NEXTG:POKEBL,32:PO 

KES4,0 :rem 29 
95 IFPEEK(197)=29THENBL=BL+Y :rem 200 
96 IFPEEK(197)=37THENBL=BL+Z :rem 201 
97 IFBL=7867THENOT=OT+l:PRINT"{HOME}{6 DOWNJ{10 RIGHT}{RVS}OU 

T{OFF}{UP}":X=0:Y=0:Z=0:Dl=32 :rem 216 
98 IFBL=7993THENOT=OT+l:PRINT"{HOME}{6 Dmm}{H'l RIGHT}{RVS}OU 

T{OFF}{UP}":X=0:Y=0:Z=0:D2=32 :rem 218 
99 IFBL=8131THENOT=OT+l :PRINT" {HOME} {6 Dmm} {10 RIGHT} {RVS}OU 

T{OFF}{UP}":X=0:Y=0:Z=0:D3=32 :rem 205 
100 NEXTF :rem 22 
101 POKECl,32:POKEC2,32:POKEC3,32:Cl=Cl-23:C2=C2+21:C3=C3+23: 

NEXTE :rem 54 
102 POKECl,Dl:POKEC2,D2:POKEC3,D3:IFD3=87THENRN=RN+l :rem 205 
103 FORG=l T0300 :NEXT: PRINT" {HOME} {6 Dmm} {8 RIGHT} {WHT} 

{10 SPACES}{BLK}" :rem 224 
104 FL=0:POKEOl,32:POKE02,32:POKE03,32:POKEIl,32:POKEI2,32 

:rem 238 
105 POKEOl+CL,1:POKE02+CL,1:POKE03+CL,1:GOT040 :rem 54 
106 Cl=8006:C2=7845:C3=7992:Dl=32:D2=32:D3=32:HH=8153:POKES5, 

0:POKES4,235 :rem 115 
107 IFPEEK(Cl)=87THENDl=87 :rem 13 
108 IFPEEK(C2)=87THEND2=87 :rem 16 
109 IFPEEK(C3)=87THEND3=87 :rem 19 
110 POKEBL,124:POKEBL+CL,2:FORT=lT07:POKEHH,87:POKECl,Dl:POKE 

C2,D2:POKEC3,D3 :rem 242 
III FORG=lT060:NEXT:POKEHH,32:POKECl,32:POKEC2,32:POKEC3,32:P 

OKES5,T*2 :rem 85 
112 HH=HH-21:Cl=Cl-23:C2=C2+21:C3=C3+23:NEXTT:POKEBL,32:POKEB 

L+CL,1:POKES5,15 :rem 58 
113 IFD3=87THENRN=RN+l :rem 79 
114 POKEHH,87:POKECl,Dl:POKEC2,D2 :rem 238 
115 FORG=7TOlSTEP-l:POKES5,G*2:FORJ=lT0300:NEXT:NEXTG:POKES4, 

0:POKES5,15 :rem 126 
116 GOT040 :rem 53 
117 POKEBL,81:POKEBL+CL,2:FORT=lT02000:NEXT:POKEBL+CL,1:POKEO 

1,32:POKE02,32 :rem 190 
118 POKE03,32:POKEIl,32:POKEI2,32:GOT040 :rem 156 
119 PRINT" {HOME} {20 DOWN} {RVS } RUNS "; RN; TAB ( 15)" {RVS lOUTS "OT; 

" {LEFT} " : rem 49 
120 PRINT" {RVS} BALLS {LEFT} "BA; TAB ( 15)" {RVS} STRK"SS;" {LEFT}" 

:rem 41 

171 



I Sports Games 

121 PRINTTAB(4)I{RVS}SC1"S1:TAB(13)I{RVS}SC2 I S2:"{2 UP}":RETU 
RN :rem 67 

122 IFII=eJTHENS1=S1+RN: RN=eJ: II=1 :PRINT" {CLR}" :OT=eJ :GOT041 
:rem 163 

123 IFII=1 THENS2=S2+RN: RN=eJ: II=eJ :PRINT" {CLR}" :OT=eJ :GOT041 
:rem 166 

172 



Kerry I 
Griffin Speed Demon 

The object of "Speed Demon," a game for the unexpanded VIC, is to drive 
your car around the track and try to complete as many laps as possible in 
two minutes. 

If you complete more than ten laps, you'll get an extra minute of bonus 
time. When your time is up, you will be given a rating based on your per
formance. Work hard enough and maybe you will get a PRO rating. 

In Speed Demon the A key is used to turn your car counterclockwise, 
and the D key to turn clockwise. Press f1 for high speed and f3 for low 
speed. 

I Saving the Programs 
Speed Demon is divided into two programs. The first contains instructions 
and DATA statements for creating graphics. If you use tape, enter Program 1 
with these changes: Delete lines 10010 and 10020 and substitute the follow
ing line for line 10000: 
10000 POKE36879,15:PRINT" {HOME} {YEL} PLEASE 
WAIT" :POKE198,2:POKE631,131:END 

Save Program 1 to tape. Then key in Program 2 and save it immediately 
after Program 1. When you run the first program, it will automatically load 
and run Program 2. 

If you use disk, be sure to save Program 2 with the filename SPEED.1, 
or adjust line 10010 of Program 1 to match your filename. 

Program 1. Speed Demon 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 PRINT"{CLR}" 
20 PRINT"{5 SPACES}{PUR}SPEED DEMON" 
30 PRINT"{5 SPACES}E11 T~ 
40 PRINT" {BLK}DRIVE YOUR CAR AROUND THE TRACK 

{2 SPACES }COMPLETE AS MANY LAPS AS "~ 
50 PRINT"POSSIBLE IN 2{6 SPACES}MINUTES." 

:rem 197 
:rem 179 

:rem 19 
AND TRY TO 

60 PRINT" {OOWN} COMPLETE MORE THAN 10 LAPS AND GET 1 
ONUS TIME." 

:rem 25 
:rem 179 
MINUTE B 

:rem 42 
COUNTER 
:rem 80 
:rem 15 

65 PRINT"{OOWN} PRESS 'A' TO ROTATE{3 SPACES}YOUR CAR 
{6 SPACES}CLOCKWISE AND 'D' TO{2 SPACES}TURN"~ 

66 PRINT" CLOCKWISE." 
67 PRINT" PRESS 'Fl' TO GO FAST AND 'F3' TO GO 
70 PRINT" {DOWN}PRESS ANY KEY TO GO ON" 
80 GETA$:IFA$=""THEN80 
90 PRINT" {CLR} {BLU} {RVS} WAIT A MINUTE" 
997 POKE52,28:POKE56,28 
998 FORI=7168T07679:POKEI,PEEK(I+25600):NEXT 

SLOW." :rem 61 
:rem 125 
:rem 243 

:rem 70 
:rem 63 

:rem 171 

173 



Sports Games 

999 POKE36869,255 :rem 178 
1000 READN:IFNTHENFORN=NTON+15:READA:POKEN,A:NEXT:GOT01000 

:rem 27 
9330 DATA 7432 ,0,56,84,124,56,124,124,56,56,124,124,56,124,8 

4,56,0 :rem 189 
9350 DATA 7448 ,0,54,95,127,95,54,0,0,0,108,250,254,250,108,0 

,0 :rem 229 
9370 DATA 7464 ,48,88,184,254,127,31,30,12,12,26,29,127,254,2 

48,120,48 :rem 98 
9390 DATA 7480 ,12,30,31,127,254,184,88,48,48,120,248,254,127 

,29,26,12 :rem 98 
9410 DATA 7496 ,230,230,152,152,230,230,128,128,8,28,28,62,62 

,127,8,8 :rem 34 
9515 DATA7512,254,253,251,247,239,223,191,127,127,191,223,239 

,247,251,253,254 :rem 37 
9520 DATA 7528,126,189,219,231,231,219,189,126,255,255,255,25 

5,255,255,255,255 :rem 58 
9525 DATA7640,127,127,127,127,127,127,127,127,254,254,254,254 

,254,254,254,254 :rem 40 
9535 DATA7656,0,255,255,255,255,255,255,255,255,255,255,255,2 

55,255,255,0 :rem 112 
9540 DATA7392,68,8,34,136,5,64,17,68,0,0,0,0,0,0,0,0 :rem 29 
9999 DATA 0 :rem 46 
10000 POKE36879,15:PRINT"{CLR}(YEL} PLEASE WAIT":POKE 198,2:P 

OKE631,13:POKE 632,13 :rem 126 
10010 PRINT "{HOME}{BLK}":PRINT "{2 DOWN}LOAD";CHR$(34);"SPEE 

D.l"iCHR$(34)i",8":PRINT "{4 DOHN}RUN" :rem 17 
10020 PRINT "{HOME}":END :rem 232 

Program 2. Speed. 1 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 POKE 36879,27:PRINT"{CLR}" :rem 164 
5 S=7739:SS=7761:C=30720:PA=37137:PX=36872:POKE36878,7:S1=368 

77:D=1:V=S :rem III 
7 POKE36877,0 :rem 209 
8 T=75:T$="1" :rem 153 
10 PRINT" {CLR} {PUR} (5 SPACES}SPEED DEMON" :rem 69 
20 PRINT"{RVS}(5 SPACES}gll T~" :rem 70 
30 PRINT"(5 DOWN} HIT ANY KEY AND THEN{2 SPACES}WHEN THE CHEC 

KERED(4 SPACES}FLAG APPEARS(RVS} ... (OFF}GO" :rem 188 
40 GETA$: IFA$=" "THEN40 : rem 235 
50 GOSUB1000 :rem 166 
55 PRINT"{HOME}(2 SPACES}(BLU}LAPS:"L"{2 SPACES}TIME:"T 

60 POKES,35:POKES+C,4 
70 POKE7736,41:POKE7736+C,0 
80 FORO=lT0500:NEXTO 
85 J=200 
90 POKE7736,32 

174 

:rem 36 
:rem 6 
:rem 8 

:rem 12 
:rem 134 

:rem 0 



Sports Games 

100 TI$="000000" : rem 243 
110 M$=MID$(TI$,4,1) :rem 13 
120 S$=MID$(TI$,5,1) :rem 21 
130 O$=MID$(TI$,6,1) :rem 19 
137 IFM$>T$THEN10000 :rem 113 
140 PRINT"{HOME}{7 RIGHT}"L"{7 RIGHT}"M$":"S$O$ :rem 120 
143 POKE 36878,7 :rem 58 
145 POKE36877,J :rem 78 
160 IFPEEK(197)=18THEND=D-l :rem 53 
180 IFPEEK(197)=17THEND=D+l :rem 52 
185 IFPEEK(197)<>lANDPEEK(197)<>4THEND=D :rem 123 
190 IFD>8THEND=1 :rem 196 
200 IFD<lTHEND=8 :rem 186 
210 IFD=lTHENG=35:Z=-1 :rem 30 
220 IFD=2THENG=39:Z=+21 :rem 84 
230 IFD=3THENG=34:Z=+22 :rem 82 
240 IFD=4THENG=40:Z=+23 :rem 82 
250 IFD=5THENG=36:Z=+1 :rem 37 
260 IFD=6THENG=38:Z=-21 :rem 93 
270 IFD=7THENG=33:Z=-22 :rem 91 
280 IFD=8THENG=37:Z=-23 :rem 98 
290 IFPEEK(V+Z)<>32ANDPEEK(V+Z)<>160THEN5000 :rem 131 
300 POKEV+Z,G:POKEV+Z+C,4:POKEV,32:V=V+Z :rem 26 
310 IFV=SORV=SSTHENL=L+l :rem 67 
330 IFPEEK(197)=39THENT=0:J=225 :rem 47 
340 IFPEEK(197)=47THENT=75:J=200 :rem 100 
350 FORE=0TOT:NEXTE :rem 230 
360 GOT0110 :rem 100 
1000 PRINT"{CLR}" :rem 37 
1010 PRINT"{OFF}{GRN}** *{2 SPACES}**{BLK} {RvsH11 @}{OFF} 

{ G RN} * * II : rem 1 99 
1020 PRINT II {OFF} {GRN} * {2 SPACES} *** {BLK} {RVS }N{ 11 SPACES}M 

{OFF}{GRN}*" :rern 3 
1025 PRINT" {OFF} {GRN} * ** * {BLK} {RVS }~{ 13 SPACES jgGH OFF} 

{GRN}" :rem 182 
1030 PRINT"{OFF} {GRN}*{2 SPACES}**{BLK} {RVS}N{2 SPACES}NP T~ 

M{ 3 SPACES} ~G~ {OFF} {GRN}" -: rem 152 
1040 PRINT" {OFF} {GRN} ** {BLK} {RVS}N{2 SPACES}N{OFF} {GRN}** * 

* * {RVS}{BLKJEM}f3 SPACESjgGHOFF}{GRN}"- :rem 248 
1050 PRINT"{OFF}{GRN}* *{BLK}{RVS}N{2 SPACES}N{OFF} {GRN} 

{BLK},>+{GRN}*{2 SPACES}**{RVS}{BLK}N{3 SPACES}~G}{OFF} 
{GRN}" - :rem 15 

1060 PRINT"* {BLK} {RVS}N{2 SPACES}N{OFF} {GRN} {2 SPACES} {BLK}+ 
=,{GRN}*{RVS}fBLK}13 @}N{4 SPACESHG}fOFF}{GRN}":rem 205 

1070 PRINT" {BLK} {RVS}N{2 SPACES}N{OFF} {GRN}* ** {RIGHT} {RVS} 
{BLK}N{7 SPACES}NToFF}{GRN}"- :rem 16 

1080 PRINT"{BLK}{Rvs}IM~{3 SPACES}~G~{OFF}{GRN}***{2 SPACES} 
{RVS}{BLKHMH7 SPACES}N{OFF}{GRN} *" :rem 167 

1090 PRINT" {BLK} {RVSjgMH3 SPACES}gGHOFF} {GRN}** * {RVS} 
{BLKHMH2 SPACES}N~4 THoFF}{GRN} * " :rem 52 

175 



Sports Games 

2eJ00 PRINT"{BLK}{RVsHM~{3 SPACESHGHOFF}{GRN}* ** {RVS} 
{BLK} gMH 2 SPACES HGHOFF} {GRN} *** {BLK}, + {GRN} *" 

:rem 250 
2010 PRINT" {BLK} {RVS HM~ {3 SPACES HG~ {OFF} {GRN} ** * {RVS} 

{BLK} gMH 2 SPACES}M {OFF} {GRN} ** {2 SPACES} {BLK} <: {GRN} " 
- :rem 239 

2020 PRINT" {BLK} {RvsHMH3 SPACESHG~{OFF}{GRN}***{2 SPACES}* 
{RVS}{BLK}M{2 SPACES}M{OFF}{GRN}*{2 SPACES}{BLK}+,{GRN}* 
" - - :rem 32 

2030 PRINT" {BLK} {RVS HM~ {3 SPACES HGH OFF} {GRN} ** {2 SPACES} * 
*{RVS}{BLK}M{2 SPACES}M{OFF}{GRN} **{2 SPACES}" :rem 28 

2040 PRINT" {BLK}TRVsHMH 2 SPACES }N{ OFF} {GRN} *** {BLK} , • + {GRN} 
{2 SPACES}*{RVS} {BLK}M{2 SPACES}M{OFF}{GRN}**{2 SPACES}" 

- - :rem 121 
2050 PRINT"{BLK} {RvsHMH2 SPACESHGHOFF} {GRN}*{2 SPACES} 

{BLK}.-.{GRN}{2 SPACES}* {RVS}{BLK}M{2 SPACES}M{OFF} 
{GRN}** " - - :rem 1 

20.60 PRINT" {BLK} {RVS HMH 2 SPACES HG~ {OFF} {GRN} * {2 SPACES} 
{BLK}+.,{GRN}{2 SPACES}* {RVS}{BLK}gM~{3 SPACES}gG~{OFF} 
{ G RN} * * " : rem 1 7 6 

2070 PRINT" {BLK} {RVS HM~ {2 SPACES HGHOFF} {GRN} ** {3 SPACES} ** 
* {2 SPACES} {RVS} {BLK} gMH 3 SPACES HGH OFF} {GRN} **" 

:rem 252 
2080 PRINT" {BLK} {RvsHMH2 SPACES}Mg10 @~N{2 SPACES}N{OFF} 

{GRN} **" - - -: rem 185 
2090 PRINT" {GRN} * {RVS} {BLK} M{ 14 SPACES }N{ OFF} {GRN} {2 SPACES} * 

*" - - : rem 37 
3000 PRINT"{GRN} *{RVS}{BLK}M{12 SPACES}N{OFF}{GRN}*** 

{2 SPACES}" - - : rem 71 
3010 PRINT" {GRN} * * {RVS} {BLK} g 12 T~ {OFF} {GRN} *** {3 SPACES} 

{ UP } " : rem 12 
3020 RETURN :rem 165 
5000 POKEV,G :rem 189 
5005 FORT=1T0100:NEXTT :rem 116 
5007 POKEV,28:POKEV+C,2 :rem 114 
5010 POKE36877,220 :rem 196 
5020 FORE=15T00STEP-5 :rem 7 
5025 POKE36878,E :rem 124 
5030 FORA=1T0300:NEXTA :rem 78 
5040 NEXTE :rem 77 
5045 POKEV,32:V=7738:POKEV,35:POKEV+C,4:D=1 :rem 86 
5050 GOT0110 :rem 149 
10000 IFL> 10THENPRINT" {HOME} {DOWN} { RIGHT} { RVS} BONUS {HOME} 

{2 DOh'N} {RIGHT} TIME I " : T$=" 0" : TI $ =" 000000" : GOTOll 0 

10001 POKE36877,0:PRINT"{CLR}{PUR}{5 SPACES}TIME IS 

10002 IFL<6THENR$="GRANNY" 
10003 IFL>5ANDL<10THENR$="ROOKIE" 
10004 IFL>10ANDL<20THENR$="AMATEUR" 
10009 IFL>20THENR$="PRO" 

176 

:rem 235 
UP" 

:rem 54 
:rem 53 

:rem 237 
:rem 97 

:rem 140 



Sports Games I 
HJ010 PRINT"{4 DOWN} YOU COMPLETED "L"LAPS" :rem 97 
10015 PRINT"{2 DOWN}YOUR RATING IS {BLK}"R$ :rem 160 
10020 PRINT" {3 DOWN}{ PUR}{ 4 RIGHT} PLAY AGAIN?" : rem 220 
10025 S=7739:SS=7761:C=30720:POKE36878,7:S1=36877:D=1:V=S 

:rem 252 
10027 POKE198,0:L=0 :rem 26 
10030 GETA$:IFA$=""THEN10030 :rem 11 
10040 IFA$="YITHEN5 :rem 39 
10050 PRINT"{CLR}":POKE36879,27:POKE36869,240:PRINT"{BLU}":EN 

D :rem 223 

177 



Jeff I 
Ranney Lap Racer 

Driving games can be exciting and challenging, and provide a pleasant 
change from the usual "blast the alien" games. Commodore has a few of 
these for the VIC-20, but as far as I know there is no good old-fashioned 
game where the driver races around a track for the best time. 

Knowing this, I developed a program for the unexpanded VIC called 
"Lap Racer." The objective is to race around the track anywhere from one to 
nine times (chosen at the beginning of the game) and beat the clock. 

The race car is controlled with the joystick. It is not limited to vertical 
and horizontal movements only, but can also move diagonally. The fire but
ton is used to accelerate. You may circle the track either way you like, but 
you must hold that direction throughout the game. 

I Understanding the Program 
Lines 90-110 initialize the variables. The variable A contains the location of 
the car on the screen (1-506). SQ is the beginning of the POKE locations on 
the screen (7680), and SW is the color location (38400). 

Lines 500-530 contain the joystick subroutine. These lines check to see 
which way the joystick is pointed, then adjust A accordingly. 

Line 550 POKEs in the race car. JS(X+4,Y+1) is the current direction 
that the car is pointing. 

Lines 1300-1440 PRINT the race track onto the screen. By changing 
these lines, the user can put obstacles on the track or can draw a completely 
new one. A good way to create new race tracks is to draw them out on 
graph paper (22 X 23) first, then type in the PRINT statements. 

I Creating Programmable Characters 
Lines 3000-5000 design the specialized characters used in this program. Line 
3090 POKEs the codes for these characters into the new character memory. 
CH is the location of the new character memory (7168). Z*8 is the character 
that must be changed, and J is the byte in that character (each character con
tains eight bytes) that is being changed. 

The first number in each DATA statement from line 4010 to line 4050 is 
the POKE code of the character you are changing. For example, the first 
number in line 4010 is 3. The POKE code for the letter Cis 3, so line 4010 is 
changing the letter C. Now, if you ask the computer to print a C later in the 
program, it will print a race car. The POKE code for D is 4, for E, it is 5, and 
so forth. 

The rest of the numbers in the DATA statements are the values of each 
of the eight bytes of the character you are changing. Each byte in that 

178 



Sports Gomes I 
character controls a horizontal line on the screen that is eight pixels long. 
These bytes contain eight bits, each of which is simply 1 or 0, on or off. If a 
bit is 1, then the corresponding pixel is turned on. Since the bits can be only 
1 or 0, values in the bytes must be represented in binary. For example, the 
value 255 is represented in binary as eight l' s, or 11111111. If a byte in 
character memory contains a value of 255, then all the bits in that byte 
would be turned on, turning on all eight pixels, thus creating a solid hori
zontal line in that character. 

The code for a race car pointing upward is contained in line 4010, start
ing with the number 90, which is the binary code for the top line of the race 
car, and ending with 60, which is the code for the bottom line. Lines 
4010-4040 are the race cars (pointing in different directions), and line 4050 
is the explosion character. 

When line 3080 reaches the DATA statement in line 5000, it tells the 
computer: 
POKE 36869,255 

This changes the character memory pointer from a point in ROM (the part of 
the computer that the user can't access) to a point in RAM, namely, 7168. 

Once you have changed the character memory pointer, however, the 
computer will look at the new character memory for all the character codes. 
Consequently, if the computer is asked to print something later in the pro
gram, it is going to print a bunch of unreadable garbage. Don't panic: There 
happens to be an easy solution to the problem. Simply print the reverse of 
whatever you want to print, and it will do what you wanted in the first 
place. To print the reverse of something, just hit CTRL and 9 inside quota
tion marks, and the rest of the characters will be reversed. 

Lap Racer 
For mistake-proof program entry, be sure to use 'The Automatic Proofreader," Appendix C. 

40 POKE36878,3:A=200:PRINT I {CLR}" :rem 234 
90 SQ=7680:SW=38400 :rem 63 
100 DIMJS(5,2):POKE37139,0:DD=37154:PA=37137:PB=37152:rem 211 
110 FORI=0T02:FORJ=0T05:READJS(J,I):NEXTJ,I :rem 239 
120 DATA-23,-22,-21,3,3,5,-1,0,1,6,3,5,21,22,23,6,4,4 :rem 14 
160 GOSUB3000 :rem 218 
180 SE=36877 :rem 125 
340 PRINT II {RVS}HOW MANY LAPS?(1-9)" :rem 244 
342 GETCV:IFCV=0THEN342 :rem 169 
350 GOSUB1300 :rem 220 
370 V=TI :rem 202 
500 POKEDD,127:S3=-«PEEK(PB)AND128)=0) :POKEDD,255 :rem 122 
510 P=PEEK(PA):S1=-«PAND8)=0):S2=«PAND16)=0):S0=«PAND4)=0) 

:rem 177 
520 FR=-«PAND32)=0):X=S2+S3:Y=S0+S1 
525 POKESQ+A,32:POKESE,210+FR*27 

:rem 55 
: rem 130 

179 



Sports Games 

530 
535 
540 
550 
555 
569 

A=A+JS(X+l,Y+l):IFA<22THENA=A+22 
FORI=lT027-FR*27:NEXT 
IFPEEK(SQ+A) <>32THEN600 
POKESQ+A, JS (X+4, Y+l) :POKESVHA, 2 
IFA> 483THENA=A-22 
GOT0500 

600 POKESE,0 
602 IFPEEK(SQ+A)=194THEN730 
603 POKESQ+A,10:POKESW+A,6 
620 POKESE,220 
630 FORL=15T00STEP-l:POKE36878,L 
635 FORI=lT0100:NEXT:NEXT 
638 POKESE,0:POKE36878,2:PRINT"{CLR}" 
640 GOSUB1300 
642 PRINT"{HOME}{RVS}"SU 
645 GOT0500 
730 SU=SU+l: PRINT" {HOME} {RVS} "SU 
735 TM=TI-V 
740 IFSU=CVTHENPRINT"{CLR}{RVS}TIME ELAPSED{HOME}{2 

CV"LAPS="TM:POKE36869,240:GOT0745 
742 GOT0750 
745 :PRINT"{OOWN}HIT ANY KEY" 
746 GETR$:IFR$=""THEN746 
747 RUN 
750 POKESQ+A,194:POKESW+A,5:A=A+JS(X+l,Y+l):GOT0569 
1300 POKE36879,124 

: rem 44 
:rem 24 
:rem 82 

:rem 104 
:rem 203 
:rem 114 
:rem 185 

: rem 81 
:rem 70 
:rem 31 

:rem 205 
:rem 98 
:rem 57 

:rem 222 
:rem 58 

:rem 109 
:rem 91 

:rem 157 
DOWN}FOR" 

:rem 207 
:rem 114 
:rem 114 
:rem 135 
:rem 151 
:rem 67 

:rem 199 
: rem 48 

:rem 225 
:rem 149 

1302 PRINT" {PUR} II II II II II I II II II II II" 
1305 PRINT "I {6 SPACES} IIIIIIIIIIIIII" 
1310 PRINT" I {6 SPACES} III {8 SPACES} III" 
1315 PRINT"I{6 SPACES}II{9 SPACES}III" 
1320 PRINT"I{3 SPACES}I{2 SPACES}I{4 SPACES}III{4 

:rem 81 
SPACES} II" 

:rem 223 
1325 PRINT"I{3 SPACES}I{2 SPACES}I{3 SPACES}IIII{5 SPACES}I" 

:rem 228 
1330 PRINT"I{2 SPACES}II{2 SPACES}I{2 SPACES}IIIIII{4 SPACES} 

1335 

1340 

1345 

1350 

1355 
1360 
1365 
1370 
1375 
1380 

180 

I" :rem 187 
PRINT" I {2 SPACES} II {2 SPACES} I {2 SPACES} II II II I 
{3 SPACES}I" :rem 9 
PRINT"I{2 SPACES}II{2 SPACES} {RVS} {GRN}B{OFF} {PUR} 
{2 SPACES}IIIIIII{3 SPACES}I" :rem 220 
PRINT"I{2 SPACES}II{2 SPACES} {RVS} {GRN}B{OFF} {PUR} 
{2 SPACES}IIIIIII{3 SPACES}I" - :rem 225 
PRINT"I{2 SPACES}III {RVS} {GRN}B{OFF} {PUR} IIIIIIII 
{3 SPACES}I" - :rem III 
PRINT"I{2 SPACES}IIIIIIIIIII{6 SPACES}I" :rem 84 
PRINT"I{2 SPACES}IIIIIIII{8 SPACES}II" :rem 190 
PRINT"I{3 SPACES}IIIIII{8 SPACES}III" :rem 122 
PRINT"II{3 SPACES}IIIII{3 SPACES}IIIIIIII" :rem 227 
PRINT"III{3 SPACES}IIII{3 SPACES}IIIIIIII" :rem 232 
PRINT" III {3 SPACES} II III {6 SPACES} II II" : rem 9 



Sports Games 

1385 PRINT"III{3 SPACES}IIIIII{6 SPACES}III" :rem 14 
1390 P RI NT " I I I { 15 SPACES} III" :rem 84 
1395 PRINT" II II { 13 SPACES}IIII" :rem 235 
1400 PRINT" IIIII{ 11 SPACES} II III " :rem 112 
1430 PRINT" {RVS} {RED}QQQQQQQQQQQQQQQQQQQQQ" :rem 236 
1440 RETURN :rem 169 
2999 REM DESIGN CUSTOM CHARACTERS :rem 54 
3000 CH=7168:POKE51,240:POKE52,CH/256-1:POKE55,240:POKE56,CH/ 

256-1 :rem 237 
3020 FORI=0T07:POKECH+256+I,0:NEXT :rem 65 
3080 READZ:IFZ=-1THENPOKE36869,255:RETURN :rem 79 
3090 FORJ=0T07:READB:POKECH+Z*8+J,B:NEXTJ : rem 93 
4000 GOT03080 :rem 200 
4010 DATA3,90,126,90,24,189,255,189,60 : rem 137 
4020 DATA4,60,189,255,189,24,90,126,90 :rem 139 
4030 DATA5,112,39,242,255,255,242,39,112 :rem 222 
4040 DATA6,14,228,79,255,255,79,228,14 :rem 146 
4045 DATA9,255,255,255,255,255,255,255,255 :rem 96 
4050 DATA10,201,107,62,252,63,124,214,147 :rem 3 
5000 DATA-l :rem 61 

181 





1-

Chapter 
Six 

Logic 
and Luck 





RiCha~~~r I Slot Machine 

"Slot Machine" is an interesting game for the unexpanded VIC. Writing the 
game, I gained a lot of experience with cursor and subroutine usage on the 
VIC. Additionally, I discovered some interesting sound effects and a method 
by which I was able to blink a prompt on the display. 

Similar to a real slot machine, this version allows a combination of five 
ways to win. You select the number of ways to win by depressing the fire 
button on the joystick. Each depression of the fire button gives another way 
to win. After you make your winning selections, the joystick handle is 
"pulled" for the slot machine to run. 

Selection of winning combinations is purely random with a weighting 
factor toward the least payoff. Lines 53-58 show how this weighting factor is 
accomplished and how the random numbers are manipulated. Winning pay
offs are as follows: 

Red Ball 15 
White Diamond 50 
Purple Club 100 
Cyan Heart 150 
Blue Spade 500 
Green Diamond 2500 
Black Bar 5000 

To start the game, depress the fire button on the joystick and have some 
fun with a slot machine on your own VIC-20. 

I The Program 
For those who are interested in the usage of the joystick fire button and 
handle, lines 30-49 will show the techniques I used. Also included in this 
logic are the necessary checks to insure that the pot doesn't decrease below 
zero and to limit the number of fire button depressions to five. 

Graphic generation is accomplished in lines 1500-1630. Display of the 
graphics occurs in lines 70-106 along with the random number generators 
and weighting factor. 

Slot Machine 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 DIMT$(7):T$(1)="{RED}Q{BLU}":T$(2)="{WHT}Z{BLU}":T$(3)=" 
{PUR }~{ BLU}" :T$ (4 )=" {CYN}E. {BLU}": T$ (5 )=" {BLU}~ {BLU}" 

:rem 
2 T$(6)="{GRN}Z{BLU}":T$(7)="{BLK}E+HBLU}" :rem 
3 W3=7:W2=1:W1~2:W6=7:W5=1:W4=2:W9=7:W8=1:W7=2 :rem 

203 
217 
226 

185 



Logic 
and Luck 

4 P=200:S=0:V=36878:N=36875:AC=1 :rem 40 
5 POKE36879,126:POKE37139,0 :rem 6 
6 PRINT" (CLR}": PRINTTAB (5) "SLOT MACHINE": PRINT: PRINT: PRINT 

7 FORI=lT07 
8 PRINTTAB(8) " {WHT} {RVS} {7 SPACES} {OFF} {BLU}" 
9 NEXTI 
10 PRINT" {6 UP} "TAB (9)T$ (1 ) TAB (ll )T$ (1 ) TAB (13 )T$ (1) 
11 PRINT:PRINTTAB(9)T$(7)TAB(11)T$(7)TAB(13)T$(7) 
12 PRINT:PRINTTAB(9)T$(1)TAB(11)T$(1)TAB(13)T$(1) 
13 PRINT:PRINT:PRINT:PRINTTAB( 7) "POT="P 

:rem 142 
:rem 175 

:rem 49 
:rem 193 
:rem 253 
:rem 45 
:rem 28 

:rem 105 
14 PRINT" {HOME} {20 DOWN} "TAB (2) "SELECT WAYS TO WIN" : rem 208 

:rem 2 
DOWN} "TAB (6)" {RED} * {DOHN}!:!{8 DOWN} "TAB (15)" 

:rem 135 
:rem 72 

DOHN} " TAB ( 6) " {RED} ** "TAB (15 ) ,,* {BLU} " : rem 12 

15 GOT030 
16 PRINT"{HOME}{3 

{RED }M" 
17 RETURN 
18 PRINT"{HOME}{6 
19 RETURN 

- - :rem 74 
20 PRINT"{HOME}{8 
21 RETURN 
22 PRINT" {HOME}{ 10 

DOWN} "TAB (6)" {RED} *~"TAB (15) "~{BLU}": rem 39 
:rem 67 

DOWN} "TAB (6)" {RED} *~"TAB (15) "~{BLU}" 
:rem 75 

23 RETURN 
24 PRINT" {HOME} {l3 DOWN} "TAB (6) " {RED} * {Up }~{ 8 

{BLU} " 
25 RETURN 
26 S=S+1:POKE36878,15:POKE36875,195 
27 ONSGOSUB20,22,18,24,16 
28 POKE36878,0:POKE36875,0 
29 RETURN 
30 FB=«PEEK(37137)AND32)=0) 
31 IFP=0ANDS=0THENI23 
32 IFP=0THEN34 
33 IFFBTHENGOT039 
34 HA=«PEEK(37137)AND8)=0) 
35 IFS=0THEN30 
36 IFHATHENGOT048 
37 AC=1 
38 GOT030 
39 IF(AC=IANDS<>5)THENGOSUB26:P=P-5 
40 IFS=50RP=0THEN44 

:rem 69 
UP} "TAB ( 15 ) "N 

:rem T81 
:rem 71 

:rem 243 
:rem 133 
:rem 215 

:rem 75 
:rem 234 

:rem 8 
: rem 71 
:rem 81 

:rem 194 
:rem 73 
:rem 85 
:rem 92 
:rem 7 

:rem 163 
:rem 173 

HANDLE":rem 80 41 FR=FRE( 0) :PRINT" {HOME} {16 DOHN} "TAB (5)" PULL 
42 PRINT"{HOME}{18 DOWN}"TAB(9)"OR" :rem 194 

:rem 9 
DOWN}"TAB(9)"{3 SPACES}{2 DOHN}{l1 LEFT} 

43 GOT045 
44 PRINT"{HOME}{18 

{20 SPACES}" 
45 PRINT"{HOME}{14 DOWN}{BLU}"TAB(12)"{5 SPACES}{5 

:rem 4 
LEFT} "P 

:rem 138 
46 AC=0 
47 GOT030 
48 A=INT(RND(I)*7)+1 

186 

:rem 91 
:rem 7 

:rem 73 



Logic I 
and Luck 

49 IFA<2THENA=2 :rem 138 
50 PRINT"{HOME}{16 OOWN}"TAB(5)"[l2 SPACES}" :rem 250 
51 PRINT: PRINTTAB (8)" {3 SPACES}" : rem 94 
52 PRINT:PRINTTAB(2)"{19 SPACES}" :rem 89 
53 D=7:FORI=lT06:GOSUB60:NEXTI :rem 179 
54 D=A:FORI=lT03:GOSUB60:NEXTI :rem 187 
55 D=7:FORI=lT03:GOSUB69:NEXTI :rem 187 
56 D=A:FORI=lT03:GOSUB69:NEXTI :rem 198 
57 D=7:FORI=lT03:GOSUB78:NEXTI :rem 189 
58 D=A:FORI=lT03:GOSUB78:NEXTI :rem 200 
59 GOT089 :rem 24 
60 X=INT(RND(1)*D)+1:W3=W2:W2=Wl:Wl=X :rem 208 
61 POKE36875,215:POKE36876,187:POKE36878,15 :rem 181 
62 POKE36878,0 :rem 3 
63 PRINT"{HOME}"TAB(9)"{6 OOHN}"; :rem 147 
64 K=W3:GOSUB88 :rem 166 
65 PRINT"{HOME}"TAB(9)"{8 OO~VN}"; :rem 183 
66 K=W2:GOSUB88 :rem 167 
67 PRINT"{HOME}"TAB(9)"{10 OOWN}"; :rem 219 
68 K=Wl:GOSUB88 :rem 168 
69 Y=INT(RND(1)*D)+1 :rem 113 
70 POKE36875,219:POKE36876,225:POKE36878,15:POKE36878,0 

:rem 135 
71 W6=W5:W5=W4:W4=Y :rem 167 
72 PRINT"{HOME}"TAB(1l)"{6 OO\VN}"; :rem 188 
73 K=W6:GOSUB88 :rem 169 
74 PRINT" {HOME} "TAB (ll)" {8 OOHN}"; : rem 224 
75 K=W5:GOSUB88 :rem 170 
76 PRINT"{HOME}"TAB(ll)" {Hl DOHN} " ; :rem 4 
77 K=W4:GOSUB88 :rem 171 
78 Z=INT(RND(l)*D)+l :rem 114 
79 POKE36875,223:POKE36876,227:POKE36878,15:POKE36878,0 

80 W9=W8:W8=W7:W7=Z 
81 PRINT" {HOME} "TAB (13)" {6 
82 K=W9:GOSUB88 
83 PRINT"{HOME}"TAB(13)"{8 
84 K=W8:GOSUB88 
85 PRINT" {HOME} "TAB (13)" {10 
86 K=W7 :GOSUB88 

RETURN 
PRINTT$(K) :RETURN 
POKE36878,0:POKE36875,0 
IFS=0THEN30 
FORE=1TOS 
ONEGOT0105,103,101,99,97 
NEXTE 

OOWN} "; 

OOWN}" ; 

DOWN}" ; 

:rem 141 
:rem 183 
:rem 190 
:rem 172 
:rem 226 
:rern 173 

:rem 6 
:rem 174 

:rem 79 
:rem 43 

:rem 222 
:rem 74 

:rem 250 
:rem 212 
:rem 240 

87 
88 
89 
90 
91 
92 
93 
94 S=0:PRINT"{HOME}{3 OOWN}"TAB(6)" 

"":PRINT:PRINTTAB(6)" " 
":PRINT: PRINT: PRINTTAB( 6) 

95 PRINT:PRINTTAB(6)" ":PRINT:PRINT:PRINTTAB(6)" " 
96 GOT014 

:rem 71 
: rem 91 
:rem 13 

187 



Logic 
and Luck 

97 IFW3=W5ANDW3=W7THENB=W3:GOSUBI07 
98 GOT093 
99 IFWl=W5ANDWl=H9THENB=Wl:GOSUBI07 
100 GOT093 
101 IFW3=W6ANDW3=W9THENB=W3:GOSUBI07 
102 GOT093 
103 IFWl=W4ANDWl=W7THENB=Wl:GOSUBI07 
104 GOT093 
105 IFW2=W5ANDW2=W8THENB=W2:GOSUBI07 
106 GOT093 

:rem 4 
:rem 22 
:rem 2 

:rem 54 
:rem 41 
:rem 56 
:rem 33 
:rem 58 
:rem 40 
:rem 60 

107 ONBGOTOI16,117,118,119,120,121,122 
108 PRINT"{HOME}{20 DOHN}"TAB(7)"YOU WIN" 
109 FORH=ITOB 

:rem 218 
:rem 95 
:rem 28 

: rem 161 
:rem 208 

SPACES}{5 LEFT}"P 

110 POKE36878,15:POKE36875,219 
111 P=P+5 
112 PRINT" {HOME}{ 14 DOHN} "TAB (12)" {5 

113 POKE36878,0:POKE36875,0 
114 FORD=1TOI0:NEXTD:NEXTH 
115 RETURN 
116 B=3 :GOT0108 
117 B=10:GOT0108 
118 B=20 :GOTOI08 
119 B=50:GOTOI08 
120 B=100:GOT0108 
121 B=500:GOTOI08 
122 B=1000:GOT0108 
123 PRINT"{CLR}{5 SPACES}{6 UP}POT= 0" 
124 PRINT" {4 DOWN} {4 SPACES}PLAY AGAIN? 

ETY$ : IFY$=" "THENI23 
125 IFY$="Y"THEN3 
126 END 

188 

:rem 150 
:rem 2 

:rem 177 
:rem 119 

:rem 86 
:rem 133 
:rem 135 
:rem 139 
:rem 175 
:rem 180 
:rem 225 
:rem 192 

{RVS }y{ OFF} {LEFT}": :G 
:rem 121 
:rem 224 
:rem 112 



Linton S. I Chastain 

Code Game 
This game will help you understand the difficulty in decoding a code that is 
generated from capital letters and the numbers 0-9. The program also helps 
you understand the subtle processes that the mind goes through to solve a 
problem. 

The program initially requests you to input a code. It will be used by the 
program to generate a pseudorandom code which you'll attempt to solve. 
The code that you input is limited to capital letters and the numbers 0-9. 
The length of your code is also limited to ten characters. 

Line 50 sends the computer to a subroutine that determines the length 
of the pseudorandom code. Lines 60-80 make sure that your input agrees 
with the input criteria. Line 90 sends the computer to a subroutine at lines 
150-220. This subroutine generates the pseudorandom code that you are to 
solve. 

Line 100 sends the computer to the subroutine at lines 230-380. This 
subroutine compares your subsequent inputs with the pseudorandom code. It 
gives you feedback on the correctness of your input as compared with the 
pseudorandom code. The subroutine also counts the number of your at
tempts (T), and it gives you the correct character after five attempts. The 
character that you are given is the first character, followed by the next 
characters after each of five attempts. 

If you solve the code before you are given the last character, you will be 
told the number of attempts it took you to solve the code (T); otherwise, you 
will be prompted with GAME OVER CODE WAS"" 

Code Game 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

20 PRINT"{CLR}":B=0:T=0:E=0:R$(I)="" 
30 PRINT"INPUT A CODE (A->Z AND OR 0->9)" 
35 PRINT"CODE LENGTH OF LESS":PRINT"THAN 10" 
40 INPUTR$(0):H=LEN(R$(0»:IFH>10 THEN20 
50 IFT<1 THEN GOSUB130 
60 FORX=1 TOA: FORY=58T064 : IFMID$ (R$ ( 0) , X, 1 ) =CHR$ (Y) 

:rem 73 
:rem 191 
:rem 121 

:rem 18 
:rem 248 

THEN20 
:rem 145 

70 IFASC(MID$(R$(0),X,1»<48 OR ASC(MID$(R$(0),X,1»>90 THEN2 
o :rem 21 

80 NEXTY:NEXTX :rem 209 
90 IFT<1 THEN GOSUB150 :rem 254 
100 GOSUB230 :rem 166 
110 POKE209,162:POKE210,31:PRINT"DO YOU HANT TO TRY" :rem 36 
115 POKE209,184:POKE210,31:PRINT"AGAIN (Y=YES OR N=NO)" 

116 INPUTR$ 
:rem 194 
:rem 158 

189 



I Logic 
and Luck 

120 IFLEFT$(R$,l)="Y" THEN 20 :rem 0 
125 IFLEFT$(R$,l)<>"Y" THEN END :rem 183 
130 A=LEN(R$(0)) :rem 57 
140 RETURN : rem 117 
150 FORY=lTOA :rem 40 
160 D(Y)=INT(RND(1)*45)+50 :rem 135 
170 IFD(Y»90 OR D(Y)<48 THEN160 :rem 185 
175 IFD(Y»57 AND D(Y)<65 THEN 160 :rem 242 
180 NEXTY : rem 49 
190 FORY=lTOA :rem 44 
200 R$(l)=LEFT$(R$(l),Y)+CHR$(D(Y)) :rem 79 
210 NEXTY :rem 43 
220 RETURN : rem 116 
230 PRINT"{CLR}":FORX=lTOA :rem 196 
240 IFMID$(R$(0),X,1)=MID$(R$(1),X,1) THEN B=B+1 :rem 253 
250 NEXTX :rem 46 
255 IFB=A AND C<A THENPOKE209,66:POKE210,30:PRINT"YOU HAVE SO 

LVED THE" : rem 116 
260 IFB=A AND C<A THENPOKE209,8.8:POKE210,30:PRINT"CODE WITH"; 

T;"ATTEMPTS" :rem 124 
270 IFB/A<l THEN POKE209,88:POKE210,30 :rem 103 
275 IFB/A<l THEN PRINT INT(B/A*100);"{3 SPACES}% CORRECT" 

:rem 103 
280 IFB=A THEN C=0 :rem 200 
290 IFB<>A THEN310 :rem 234 
300 RETURN :rem 115 
310 POKE209, 110 :POKE210, 30 :T=T+1 :E=E+1: INPUT"TRY AGAIN"; R$ (0) 

:rem 30 
315 FORX=lTOA :rem 42 
316 Z(X)=PEEK(7800+X) :rem 162 
317 IFZ(X)<27 THEN R$(0)=R$(0)+CHR$(Z(X)+64) :rem 65 
318 IFZ(X»47 AND Z(X)<58 THEN R$(0)=R$(0)+CHR$(Z(X)) :rem 48 
319 NEXTX :rem 52 
320 IFE=5 THENC=C+1 :rem 41 
330 IFE=5 THEN POKE209,162:POKE210,31 :rem 38 
335 IFE=5 THENPRINTLEFT$(R$(l),C) :rem 164 
340 IFE=5 THENE=0 :rem 190 
345 IFC=A THEN POKE209, 110 :POKE210, 30 : rem 46 
350 IFC=A THEN PRINT"GAME OVER CODE WAS" :rem 68 
355 IFC=A THEN POKE209,132:POKE210,30:PRINTR$(1) :rem 242 
360 B=0:FORX=lT01000:NEXTX :rem 100 
370 IFC<A THEN230 :rem 173 
380 C=0:T=0:RETURN :rem 96 
390 END : rem 115 

190 



Stephen I 
Hust Logicolor 

This game of logic for the unexpanded VIC is easy to play but difficult to 
master. The objective is deceptively simple: Guess the color pattern that the 
computer has preselected using the clues given after each guess. 

There are four positions to match. The correct solution requires that you 
guess the correct color for each position. After each guess your VIC will tell 
how many of the colors you guessed match in the correct position, how 
many match but were in the wrong position, and how many don't match. 
Use the clues to help find the correct answer. You'll get only six tries to fig
ure out the solution, and once you enter a guess there's no turning back. 

Logicolor 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

5 PRINT"{CLR}":IFPEEK(44)=18GOT015 :rem 133 
10 SC=7680:CL=38400:GOT020 :rem 227 
15 SC=4096:CL=37888 :rem 36 
20 SB=36879:VL=36878:S=36874:T=36875:U=36876 :rem 246 
30 POKESB,152:POKEVL,15 :rem 136 
40 PRINT" {CLR}" :PRINT:PRINT:PRINTSPC( 6)" {BLK}LOGICOLOR": rem 8 
45 PRINT:PRINT:PRINTSPC(2)"YOU HAVE SIX TRIES":PRINTSPC(3)"TO 

GET THE RIGHT" : rem 36 
46 PRINTSPC(2)"COLOR COMBINATION" :rem 86 
50 PRINT:PRINT"''';CHR$(113);'''= ONE COLOR IS IN":PRINT"THE CO 

RRECT POSITION" : rem 48 
55 PRINT :PRINT" , (WHT}"; CHR$ (113) ;" {BLK} '= ONE COLOR IS IN": PR 

INT"THE WRONG POSITION" :rem 69 
60 PRINT:PRINTSPC(l)"{RED}CAUTIONI YOU CAN'T":PRINTSPC(l)"CHA 

NGE A COLOR ONCE" :rem 254 
61 PRINTSPC(l)"A KEY IS STRUCK!{BLK}" :rem 243 
65 PRINT:PRINTSPC(5)"HIT ANY KEY" :rem 37 
70 GETB$:IFB$=""THEN70 :rem 243 
100 A=INT(RND(1)*6)+3 :rem III 
110 B=INT(RND(1)*6)+3 :rem 113 
120 C=INT(RND(1)*6)+3 :rem 115 
130 D=INT(RND(1)*6)+3 :rem 117 
150 RP=81:R=87:Q=63:E=160:N=200:DI=49 :rem 98 
160 RCP=0:WCP=0 :rem 122 
170 X=SC+3*22:V=CL+3*22:P=9 :rem 247 
200 PRINT"{CLR}" :rem 246 
210 PRINT"{HOME}COLOR{2 SPACES} {RED} {RVS} {OFF} {CYN} {RVS} 

{OFF} {PUR} {RVS} {OFF} {GRN} {RVS} {OFF} {BLU}{RVS} {OFF} 
{SPACE} {YEL} {RVS} {OFF} {BLK} II :rem 144 

220 PRINT" KEY{ 3 SPACES} 3 4 5 6 7 8" : rem 143 
300 FORWW=lT06 :rem III 
500 POKEX+3,R:POKEX+4,R:POKEX+25,R:POKEX+26,R:POKEX,DI 

:rem 179 

191 



Logic 
and Luck 

510 POKEV+3,0:POKEV+4,0:POKEV+25,0:POKEV+26,0:POKEV,0:rem 197 
520 POKEX+P,Q:POKEX+P+2,E:POKEX+P+4,E:POKEX+P+6,E:POKEV+P,0 

:rem 208 
530 GOSUB1000 : rem 217 
550 H=VAL(A$) :rem 184 
560 P=P+2 : rem 213 
570 POKEX+P,Q:POKEV+P,0 :rem 177 
580 GOSUB1000 : rem 222 
590 I=VAL(A$) :rem 189 
600 P=P+2 :rem 208 
610 POKEX+P,Q:POKEV+P,0 :rem 172 
620 GOSUB1000 : rem 217 
630 J=VAL(A$ ) :rem 185 
640 P=P+2 : rem 212 
660 POKEX+P,Q:POKEV+P,0 :rem 177 
670 GOSUB1000 : rem 222 
680 K=VAL(A$ ) :rem 191 
700 GOSUB3000 : rem 218 
710 Z=INT(RND(1)*4)+3 :rem 141 
740 IFZ=5THENZ=25 : rem 35 
750 IFZ=6THENZ=26 :rem 38 
770 IFRCP=0THEN860 : rem 76 
780 FORQL=lTORCP :rem 25 
790 POKEX+Z,RP:POKEV+Z,0:POKES,N:FORZZ=lT0100:NEXTZZ:POKES,0 

:rem 12 
800 Z=Z+l : rem 229 
810 IFZ=5THENZ=25 :rem 33 
830 IFZ=27THENZ=3 :rem 35 
840 NEx-orQL :rem 120 
850 IFRCP=4THEN4030 :rem 120 
860 IFHCP=0THEN940 :rem 80 
870 FORLQ=lTOWCP :rem 30 
880 POKEX+Z,RP:POKEV+Z,I:POKEU,N:FORZZ=lTOI00:NEXTZZ:POKEU,0 

:rem 17 
890 Z=Z+l :rem 238 
900 IFZ=5THENZ=25 :rem 33 
920 IFZ=27THENZ=3 :rem 35 
930 NEXTLQ :rem 120 
940 RCP=0:WCP=0 :rem 128 
950 X=X+3*22:V=V+3*22:P=9:DI=DI+1 :rem 115 
960 NEXTWW :rem 140 
970 GOT05000 :rem 158 
1000 GETA$:IFA$=" "THEN1000 : rem 165 
1010 IFA$>"8"ORA$<"3"THENI000 :rem 25 
1020 POKEX+P,E:POKEV+P,VAL(A$)-1 :rem 147 
1030 RETURN :rem 164 
3000 IFH=ATHEN3045 :rem 19 
3010 IFH=BANDI<>BTHEN3040 :rem 232 
3011 I FH=CANDJ < > CTHEN3040 :rem 236 
3012 IFH=DANDK< > DTHEN3040 :rem 240 
3030 GOT03050 :rem 199 

192 



3040 ~yCP=WCP+l 
3041 GOT03050 
3045 RCP=RCP+l 
3050 IFI=BTHEN30a5 
3055 IFI=AANDH<>ATHEN30a0 
3056 IFI<>CORJ=CTHEN3060 
3057 IFH<>CTHEN3080 
3058 IFH=ATHEN30a0 
3059 IFH<>AANDH=BTHEN3080 
3060 IFI<>DORK=DTHEN3070 
3061 IFH<>DTHEN3080 
3062 IFH=ATHEN3080 
3063 IFH<>AANDH=BTHEN3080 
3064 IFH<>AANDJ<>CANDH=CTHEN3080 
3070 GOT03100 
3080 WCP=WCP+l 
3081 GOT03100 
30a5 RCP=RCP+l 
3100 IFJ=CTHEN3135 
3105 IFJ=AANDH<>AANDI<>ATHEN3130 
3106 IFJ=AANDH<>AANDI=BTHEN3130 
3107 IFJ=BANDI<>BANDH<>BTHEN3130 
3108 IFJ=BANDI<>BANDH=ATHEN3130 
3109 IFJ<>DORK=DTHEN3129 
3110 IFH<>DANDI<>DTHEN3130 
3111 IFH=AANDI=BTHEN3130 
3112 IFH=AANDI=CTHEN3130 
3113 IFH=BANDI=CTHEN3130 
3114 IFH=CANDI=BTHEN3130 
3115 IFH=CANDI=ATHEN3130 
3116 IFH=BANDI=ATHEN3130 
3117 IFH=AANDI<>DTHEN3130 
3118 IFH=BANDI<>DTHEN3130 
3119 IFH=CANDI<>DTHEN3130 
3120 IFH<>DANDI=ATHEN3130 
3121 IFH<>DANDI=BTHEN3130 
3122 IFH<>DANDI=CTHEN3130 
3129 GOT03150 
3130 WCP=WCP+l 
3131 GOT03150 
3135 RCP=RCP+l 
3150 IFK=DTHEN3185 
3155 IFK<>AORH=ATHEN3160 
3156 IFI<>AANDJ<>ATHEN31a0 
3157 IFI=BANDJ<>ATHEN31a0 
3158 IFI=BANDJ=CTHEN3180 
3159 IFI<>AANDJ=CTHEN3180 
3160 IFK<>BORI=BTHEN3166 
3161 IFH< > BANDJ < >BTHEN3180 
3162 IFH=AANDJ<>BTHEN3180 

Logic I 
and Luck 

: rem 52 
:rem 201 

:rem 47 
: rem 30 

:rem 243 
: rem 198 

:rem 93 
:rem 31 

:rem 247 
:rem 197 

:rem 89 
:rem 26 

:rem 242 
:rem 206 
:rem 199 
:rem 56 

:rem 201 
:rem 51 
:rem 24 

: rem 195 
:rem 136 
:rem 200 
:rem 139 
:rem 207 

:rem 42 
:rem 172 
:rem 174 
:rem 176 
:rem 177 
:rem 177 
:rem 177 
:rem 241 
:rem 243 
:rem 245 
:rem 235 
:rem 237 
:rem 239 
:rem 209 

:rem 52 
:rem 202 

:rem 47 
:rem 36 

:rem 195 
:rem 53 

:rem 250 
:rem 192 
:rem 253 
: rem 200 

:rem 50 
:rem 245 

193 



I Logic 
and Luck 

3163 
3164 
3165 
3166 
3167 
3168 
3169 
317121 
3171 
3172 
3173 
3179 
318121 
3181 
3185 
4121121121 
41213121 
41215121 
41216121 
41217121 
41218121 
41219121 
41121121 
412121 
414121 
415121 
416121 
419121 
42121121 

4210 
5121121121 
51211215 
51211121 
51212121 
51213121 
51214121 
51215121 
51216121 
51217121 
51218121 
51219121 
51121121 
511121 

194 

IFH=AANDJ=CTHEN318121 
IFH<>BANDJ=CTHEN318121 
IFH<>BANDJ=ATHEN318121 
IFK<>CORJ=CTHEN3179 
IFH<>CANDI<>CTHEN318121 
IFH=AANDI=BTHEN318121 
IFH=AANDI<>CTHEN318121 
IFH=BANDI=ATHEN318121 
IFH=BANDI<>CTHEN318121 
IFH<>CANDI=ATHEN318121 
IFH<>CANDI=BTHEN318121 
GOTO 4121 121 121 
WCP=WCP+l 
GOT04121121121 
RCP=RCP+l 
RETURN 
READPP 
IFPP=-lTHEN412121 
READDD 
POKES,PP:POKET,PP:POKEU,PP 
FORNN=lTODD:NEXTNN 
POKES,I2I:POKET,I2I:POKEU,12I 
GOT04 121 3 121 
POKES,I2I:POKET,I2I:POKEU,121 
RESTORE:GOT042121121 
DATA21219, 1121121,21219, 5121, 21219,5121, 21219,5121 
DATA219, 1121121, 21219, 1121121, 225, 1121121, 232, 5121121 
DATA-l 

:rem 186 
:rem 249 
:rem 248 
:rem 213 

: rem 57 
:rem 189 
:rem 252 
:rem 182 
:rem 246 
:rem 246 
:rem 248 
:rem 21219 

:rem 57 
: rem 21212 

:rem 52 
:rem 164 
:rem 131 
:rem 137 
:rem 11121 
:rem 44 

:rem 253 
:rem 222 
:rem 197 
:rem 216 

:rem 38 
: rem 68 

:rem 2121121 
:rem 7121 

FORY=l T018 :PRINT :NEXT: PRINT "YOU DID IT 
" 

IN":DI-48:"TRIESI 
:rem 85 

:rem 198 GOT051211121 
POKES,N:POKET,N:POKEU,N:FORZZ=lT07121121:NEXT 
POKES,I2I:POKET,I2I:POKEU,I2I:FORY=lT020:PRINT:NEXT 
X=SC+484:V=CL+484:P=9 
PRINT "SOLUTION": 
POKEX+P,E:POKEV+P,A-l 
P=P+2 
POKEX+P,E:POKEV+P,B-l 
P=P+2 
POKEX+P,E:POKEV+P,C-l 
P=P+2 
POKEX+P,E:POKEV+P,D-l 
GETB$:IFB$=""THEN51121121 
GOTOll21121 

:rem 38 
:rem 8 

:rem 227 
:rem 8121 
:rem 64 

:rem 3 
:rem 67 

:rem 5 
:rem 70 

:rem 7 
: rem 73 

:rem 177 
:rem 145 



B~~~~S I Maneuver 

Are you just a little weary of shooting down alien craft, dodging bombs, and 
playing all those cloned and recloned action games? This game will stimulate 
the gray matter and give quiet satisfaction if you manage to maneuver things 
to a successful conclusion. 

This isn't a game of pure chance or mechanical skill laced with random 
numbers or happenings, but one where you have full control. You have all 
the data before you, and only your mind and cleverness can you resolve the 
situation. This game is similar to a card game conceived by Martin Gardner. 

I Thinking and Planning 
The only random aspect of the game occurs when the 52 shuffled cards are 
laid out face up, left to right, a row at a time, in eight columns. From then 
on it's up to you. The first four columns each contain 7 cards, and the last 
four columns contain 6. This is called the board. The object of the game is to 
maneuver these cards into numeric order (ace to king) into the four piles 
above the board, one for each suit. 

Below the board are four cells called temporary cells. Only one card at a 
time can occupy a temporary cell. Thus, a maximum of only four cards can 
be held in these cells at anyone time. 

Only cards from the bottom of each column and those in temporary cells 
can be moved, and they can be moved only one at a time. When a card is 
taken from a board column, the next card in that column becomes accessible. 

I Moving Cards 
To pick up a card, use the joystick to place the green rectangle completely 
over the desired card and press the fire button. The green rectangle will dis
appear leaving the card visible again. The card can now be maneuvered to 
the desired location by using the joystick. When the card is in place, press 
the fire button again. The green rectangle will reappear over the card, and it 
is then free to move to the next card to be picked up. 

When the fire button is pressed, the green rectangle will either disappear 
or reappear depending on the situation, and a beep will sound indicating 
that a legal move has been made. However, if you have made a mistake or 
are trying to cheat, a berating tone will be heard and the screen will remain 
unchanged. 

There are only three places a card can be moved to. A card may be 
placed in its proper pile above the board, but only if it's the next card in nu
meric order. It may be placed in one of the temporary cells providing that it 
is vacant. Or it may be placed at the bottom of one of the board columns, 
but only if the card currently at the bottom is the next card of the same suit 

195 



Logic 
and Luck 

(for example, a four of hearts can be placed on the five of hearts). If one of 
the board columns becomes empty, then any accessible card can be placed 
there as a new starting card. 

Make sure that when you place a card in one of the four piles above the 
board that the suit of the card is placed over the suit which is already 
printed there. 

When the program is running, it will take about 40 seconds to "shuffle" 
the cards. It will then layout the cards for you. Unfortunately, since the 
VIC-20 has only 22 print positions across, the last two columns are squeezed 
together without an intervening space. But this does not detract from the 
mental challenge of the game. 

The program constantly scans to see if kings top the four piles above the 
board. When you achieve your goal, the computer will immediately 
congratulate you and begin shuffling the cards for another game. If you find 
yourself hopelessly stuck, press any key on the keyboard, and the cards will 
be shuffled for another game. 

Maneuver 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 DIMC%(52):POKE36878,15:PRINT"{CLR}" 
10 FORX=lT052:C%(X)=X:NEXTX 
50 PRINT"{CLR}{4 SPACES}***MANEUVER***":PRINT 

:rem 
:rem 
:rem 

212 
201 
239 

60 PRINT" {4 SPACES }{BLK}X{ 4 SPACES }{RED} Z {4 SPACES}S 
{4 SPACES} (BLK}A" - - - :rem 185 

70 PRINT - :rem 244 
80 FORX=lT052:A=INT(RND(1)*(53-X)+X):B%=C%(X) :C%(X)=C%(A):C%( 

A)=B% :rem 173 
85 PRINT"{BLK}"::IFC%(X»26THENPRINT"{RED}": :rem 224 
90 S=INT«C%(X)-1)/13)+1:N=C%(X)-13*(S-1) :rem 119 
100 IFS=lTHENS$="X " :rem 224 
110 IFS=2THENS$="A " :rem 203 
120 IFS=3THENS$="Z " :rem 230 
130 IFS=4THENS$="S " :rem 225 
140 N$=RIGHT$(STR$(N),l) :rem 80 
160 IFN=lTHENN$="A" :rem 69 
170 IFN=10THENN$="T" :rem 137 
180 IFN=llTHENN$="J" :rem 129 
190 IFN=12THENN$="Q" :rem 138 
200 IFN=13THENN$="K" :rem 125 
210 PRINTN$+S$: :IF(X+1 )/8=INT( (X+1 )/8) THENPRINT" {LEFT}": 

215 
220 
230 

240 
245 

196 

IFX/ 8=INT(X/8) THENPRINT" {LEFT}" : 
NEXTX:FORX=lT011:PRINT:NEXTX 
PRINT"{RVS}{BLU}{3 RIGHT}{2 SPACES}{3 RIGHT}{2 
{3 RIGHT}{2 SPACES}{3 RIGHT}{2 SPACES}" 
PX=eJ:PY=12 
H1=160:H2=160:HC1=5:HC2=5 

:rem 97 
:rem 246 
:rem 175 

SPACES} 
:rem 243 
:rem 46 
:rem 65 

------------------ ----------- --- ----



Logic 
and Luck 

250 ZS=7680+22*PY+PX:ZC=38400+22*PY+PX :rem 211 
260 Sl=PEEK(ZS):S2=PEEK(ZS+1):Cl=PEEK(ZC):C2=PEEK(ZC+l) 

:rem 80 
270 POKEZS,Hl:POKEZS+l,H2:POKEZC,HCl:POKEZC+l,HC2 :rem 107 
280 GOSUB370:IFFB=lTHEN430 :rem 57 
283 GETA$:IFA$<> .... THEN820 :rem 151 
285 IFPEEK(7727)=11ANDPEEK(7732)=11ANDPEEK(7737)=11ANDPEEK(77 

42)=11THEN840 :rem 28 
290 IFXD=0ANDYD=0THEN280 :rem 217 
300 POKEZS,Sl:POKEZS+1,S2:POKEZC,C1:POKEZC+1,C2 :rem 235 
310 PX=PX+XD:PY=PY+YO :rem 121 
320 IFPX<0THENPX=0 :rem 124 
330 IFPX>20THENPX=20 :rem 227 
340 IFPY<2THENPY=2 :rem 132 
350 IFPY>21THENPY=21 :rem 233 
360 GOT0250 :rem 105 
370 POKE37154,127:J%=PEEK(37152)AND128:POKE37154,255 :rem 148 
380 J%=J%OR(PEEK(37137)AND127) :rem 144 
390 XD=SGN(J%AND16)-SGN(J%AND128) :rem 154 
400 YD=SGN(J%AND4)-SGN(J%AND8) :rem 253 
410 FB=1-SGN(J%AND32) :rem 152 
420 RETURN :rem 118 
430 IFHCl=5THEN700 :rem 26 
440 IFPY=21ANDSl=160ANDS2=160THEN680 :rem 148 
445 IFPY=21THEN660 :rem 64 
450 IFPY<>2THEN550 :rem 70 
460 IFS2<>H2THEN660 :rem 109 
470 IFSl=32ANDHl=lTHEN680 :rem 215 
480 IFSl=lANDHl=50THEN680 :rem 216 
490 IFSl=57ANDHl=20THEN680 :rem 17 
500 IFSl=20ANDHl=10THEN680 : rem 254 
510 IFSl=10ANDHl=17THEN680 :rem 5 
520 IFSl=17ANDHl=11THEN680 :rem 7 
530 IFSl=>50ANDSl<=56ANDSl+l=HlTHEN680 :rem 252 
540 GOT0660 :rem 110 
550 IFSl<>320RS2<>32THEN660 :rem 92 
560 IFPY<4THEN660 :rem 14 
570 IFINT(PX/3)<>PX/3ANDPX<>20THEN660 :rem 23 
580 IFPY=4THEN680 :rem 19 
590 IFPEEK(ZS-21)<>H2THEN660 :rem 159 
600 G=PEEK(ZS-22):IFG=11ANDH1=17THEN680 :rem 59 
610 IFG=17ANDHl=10THEN680 :rem 201 
620 IFG=10ANDHl=20THEN680 : rem 196 
630 IFG=50ANDHl=lTHEN680 :rem 152 
640 IFG=20ANDHl=57THEN680 :rem 209 
650 IFG=>51ANDG<=57ANDG=Hl+lTHEN680 :rem 74 
660 POKE36874,160:FORC=1T0150:NEXT:POKE36874,150 :rem 85 
670 FORC=lT0150:NEXT:POKE36874,0:GOT0280 :rem 197 
680 POKE36876,235:S1=Hl:S2=H2:C1=HC1:C2=HC2 :rem 219 
690 Hl=160:H2=160:HCl=5:HC2=5:FORC=1T0150:NEXT:POKE36876,0:GO 

T0270 :rem 168 

197 



Logic 
and Luck 

700 IFPY<4THEN660 :rem 10 
710 IFPY<>21THEN770 :rem 122 
720 IFNOT(PX=30RPX=80RPX=130RPX=18)THEN660 :rem 228 
730 IFCl=60RC2=6THEN660 :rem 100 
740 POKE36876,235:Hl=Sl:H2=S2:HCl=Cl:HC2=C2 :rem 216 
750 Sl=160:S2=160:Cl=6:C2=6:FORC=lT0150:NEXT :rem 78 
760 POKE36876,0:GOT0270 :rem 66 
770 IFNOT(S2=650RS2=830RS2=880RS2=90)THEN660 :rem 212 
780 IFPEEK(ZS+22)<>320RPEEK(ZS+23)<>32THEN660 :rem 189 
790 POKE36876,235:Hl=Sl:H2=S2:HCl=Cl:HC2=C2 :rem 221 
800 Sl=32:S2=32:Cl=1:C2=1:FORC=lT0150:NEXT :rem 220 
810 POKE36876,0:GOT0270 :rem 62 
820 PRINT"{CLR}"7SPC(224) 7 "YOU HAVE LOST1" :rem 11 
830 PRINT"{DOWN}YOU NEED TO PRACTICE1":FORX=lT02000:NEXT:GOTO 

50 : rem 66 
840 PRINT"{CLR}"7SPC(224)7"CONGRATULATIONS1" :rem 39 
850 PRINTSPC (26) 7 "YOU HAVE WON 11" : rem 159 
860 FOR X=l TO 3000:GOT050 :rem 137 

198 



MCDann~:: I Battleship 

"Battleship" is a version of the traditional game in two parts for the un
expanded VIC and two players. 

The first program introduces this traditional game to the newcomer. The 
second program must be saved using the filename BSHIP.PRG. Tape users 
should delete lines 950 and 960 of Program I, and change line 945 to 
945 POKE 198,1:POKE 631,131 

Each player starts with four ships hidden on the grid: A battleship is five 
squares long, a cruiser occupies four squares, a destroyer is three squares, 
and a submarine is two. The ships may be located vertically, horizontally, or 
in either diagonal direction. You begin by being permitted to fire five volleys 
per round. Each time your opponent sinks one of your ships, you get one 
less volley per round. The first player to sink his or her opponent's entire 
fleet is the winner. 

This game differs just a bit from the paper-and-pencil version since the 
computer sets up both battlefields. This adds an extra element of excitement 
to the traditional game. Not only do you not know where your opponent's 
fleet is hidden, but you don't know where yours is either, so there's consid
erable suspense as your opponent takes shots. And the computer can layout 
some very sneaky battlefields. 

Program 1. Battleship 
For mistake-proof program entry, be sure to use 'The Automatic Proofreader," Appendix C. 

2 GOSUB500 
5 X=8174:Y=30720:Z=500 
10 V=36878:N=36877:S=36874:S1=36875 
20 POKEV,15 
30 POKES,128:POKESl,170 
35 FORT=IT0700:NEXTT 
40 POKES,128:POKESl,130 
50 FORM=IT0900:NEXTM 
60 FORB=15T00STEP-.02 
61 POKEV,B 
62 NEXTB 
70 POKES,0:POKESl,0 
80 FORT=500T00STEP-l:POKEV,T/100:POKEN,200 
90 IFT=ZTHENGOSUB200 
95 IFT<10THENPOKEN,0:GOT0600 
100 NEXTT:POKEN,0:END 
200 POKEX,93:POKEX+Y,0:Z=Z-50 
210 POKEX+22,32:X=X-22 
220 RETURN 
500 PRINT" {CLR} {9 DOWN} {10 SPACESH2 F~" 

: rem 71 
:rem 208 
:rem 182 
:rem 121 

:rem 93 
:rem 24 
:rem 90 
:rem 9 

:rem 254 
:rem 90 

:rem 233 
:rem 142 

: rem 86 
:rem 36 

:rem 255 
:rem 72 
:rem 15 

:rem 242 
:rem 116 

:rem 8 

199 



I Logic 
and Luck 

510 PRINT"{9 SPACES}{RVS}£{2 SPACESH*}{OFF}" :rem 147 
520 PRINT"g8 @3E*}{RVS}{4-SPACES} {OFF}£E8 @~" : RETURN: rem 238 
600 POKE36879,42 - :rem 104 
610 PRINT"{WHT}{CLR}{8 oo~m}" :rem 136 
620 PRINT"{5 SPACES} {Rvs}£E*}£E*}£E*}£E*}£E*}£E*}{OFF}" 

- - - - - - : rem 61 
630 PRINT" {4 SPACES} {RVS}£{ 12 SPACES} E*} {OFF}" :rem 150 
640 PRINT"{4 SPACESH*HRYS} BATTLESHIP! {OFF}£" :rem 168 
650 PRINT"{4 SPACES}{RVS}£{12 SPACESH*}{OFF}" :rem 152 
660 PRINT" (5 SPACES H*UE*}£E*}£E*}£E* 3£E*}£" : rem 157 
670 POKEN,220 - - - - - - :rem 218 
680 FORL=15T00STEP-1 :rem 225 
690 POKEV,L :rem 156 
700 FORM=lT0300:NEXTM :rem 53 
710 NEXTL :rem 35 
720 POKEV,0:POKEN,0 :rem 141 
750 PRINT"{2 OOWN} INSTRUCTIONS? (Y/N) :rem 136 
760 GETA$:IFA$=""THEN760 :rem 93 
770 IFA$="N"THENPOKE36879,27:PRINT"{CLR}{BLU}":GOT0930:rem 49 
780 IFA$="Y"THEN800 :rem 52 
790 GOT0760 :rem 118 
800 POKE36879,27:PRINT"{CLR}{BLK}" :rem 155 
810 PRINT"BATTLESHIP! IS A GAME FOR 2 PLAYERS." :rem 217 
820 PRINT"{OOW}EACH PLAYER HAS HIS{3 SPACES}mm BATTLE ZONE 

{SPACE}AND A FLEET OF FOUR SHIPS." :rem 16 
830 PRINT" {OOW}A BATTLESHIP IS FIVE{ 2 SPACES }GRID SQUARES LO 

NG, :rem 248 
840 PRINT"{OOWN}A CRUISER IS FOUR," :rem 224 
850 PRINT" { OOWN} A DESTROYER I S THREE," : rem 1 9 3 
860 PRINT"{OOWN}AND A SUB IS TWO." :rem 66 
870 PRINT" {2 OOWN}HIT ANY KEY" : rem 72 
880 GETA$ :IFA$=""THEN880 :rem 99 
890 PRINT"{CLR}{OOWN}EACH PLAYER BEGINS{4 SPACES}WITH VOLLEYS 

OF FIVE{2 SPACES}SHOTS." :rem 148 
900 PRINT"{OOWN}IF YOUR OPPONENT SINKSA SHIP, YOU LOSE ONE 

{2 SPACES}SHOT." :rem 115 
910 PRINT"{OOWN}THE WINNER IS THE{5 SPACES}FIRST PLAYER TO SI 

NK{2 SPACES}HIS OPPONENT'S ENTIRE FLEET." :rem 16 
920 PRINT"{OOWN}FlRE BY ENTERING GRID COORDINATES (H7,B6, 

(3 SPACES}ETC.) :rem 131 
930 PRINT"{OOWN}WHEN YOU'RE READY TO{2 SPACES} PLAY, PRESS RET 

URN" :rem 82 
940 GET R$:IF R$="" THEN 940 :rem 127 
945 PRINT" {CLR} {BLK} PLEASE WAIT": POKE 198,2: POKE 631,13: POKE 

{SPACE}632,13 :rem 21 
950 PRINT" {HOME} {WHT}" : PRINT II (2 OOWN}LOAD" ~CHR$ (34) ~ "BSHIP.P 

RGI~CHR$(34)~",8" :rem 171 
960 PRINT II {5 Dmm}RUN ": PRINT II {HOME} ": END : rem 233 

200 



Program 2. Bship.prg 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

Logic 
and Luck 

5 POKE648,28 :rem 156 
10 POKE56,28:CLR :rem 172 
20 DIML%(23),P(5,5,2),B(2),C(2),D(2),S(2),U(5),V(4),W(3),Y(2) 

:R=7705 :rem 181 
30 GOSUB800:PRINT"{CLR}{BLK}":GOSUB800 :rem 251 
50 E=l: F=l : rem 6 
60 PRINT I {CLR}":CO=30720:N(1)=5:N(2)=5 :rem 200 
70 ZX=ZX+1 :rem 100 
80 FORT=0T09 :rem 236 
90 PRINTT"{RVS}{10 SPACES}{OFF}" :rem 50 
100 NEXTT :rem 36 
110 PRINT"{3 SPACES}ABCDEFGHIJ" :rem 26 
120 IFZX=lTHENGOSUB800:GOT060 :rem 98 
130 PRINT"{2 DOWN}" :rem 135 
140 FORZ=lT04 :rem 27 
150 ONZGOT0160, 170,180,190 : rem 172 
160 L=5:GOT0200 :rem 90 
170 L=4:GOT0200 :rem 90 
180 L=3:GOT0200 :rem 90 
190 L=2 : rem 85 
200 X=INT(RND(1)*207)+R :rem 9 
210 IFPEEK(X)<>160THEN200 :rem 194 
220 A=INT(RND(1)*4)+1 :rem 110 
230 ONAGOT0240,250,260,270 :rem 142 
240 I=1:GOT0280 :rem 90 
250 I=21:GOT0280 :rem 141 
260 I=22:GOT0280 :rem 143 
270 I=23 :rem 132 
280 FORM=lTOL :rem 43 
290 P(M,Z,E)=X :rem 21 
300 IFPEEK(X)<>160THEN200 :rem 194 
305 IFI=10RI=22THEN320 :rem 45 
310 IFPEEK(X+1)<>160ANDPEEK(X+22)<>160THEN200 :rem 96 
320 POKEX,224:X=X+I :rem 123 
330 NEXTM :rem 34 
340 NEXTZ :rem 48 
350 PRINT"{HOME}" :rem 124 
360 FORT=ITOI0 :rem 70 
370 IFE=2THEN390 :rem 168 
380 PRINT" {3 RIGHT} {RVS} {BLK}LLLLLLLLLL(OFF} " :GOT0400: rem 246 
390 PRINT" {3 RIGHT} {RVS} {GRN} LLLLLLLLLL (OFF} {BLU} " : rem 157 
400 NEXTT :rem 39 
410 IFE=lTHENE=2:R=7193:GOSUB800:GOTOI30 :rem 176 
420 PRINT"{DOWN}PLAYER"F"TURN"K+l; :rem 250 
430 K=K+l :rem 198 
435 POKE198,0 :rem 201 
440 GETA$: IFA$='"'THEN440 : rem 83 
450 IFASC(A$)<650RASC(A$»74THEN440 :rem 250 
460 PRINTA$;:GOT0480 :rem 214 

201 



Logic 
and Luck 

470 GOT0440 :rem 108 
480 GETB$:IFB$=""THEN480 :rem 93 
490 IFASC(B$)<480RASC(B$»57THEN480 :rem 6 
500 PRINTB$:A=VAL(B$) :GOT0520 :rem 228 
510 GOT0480 :rem 76 
520 G=ASC(A$)-65 :rem 64 
530 H=R+G+(22*A) :rem 44 
540 FORT=lT05 :rem 26 
550 IFH=P(T,1,E)THENP(T,1,E)=0:Q=2:CC=2:U(E)=U(E)+1:GOT0610 

:rem 172 
555 IFPEEK(H)=2THEN620 :rem 34 
560 IFH=P(T,2,E)THENP(T,2,E)=0:Q=3:CC=7:V(E)=V(E)+1:GOT0610 

:rem 183 
565 
570 

IFPEEK(H)=3THEN620 :rem 36 
IFH=P(T,3,E)THENP(T,3,E)=0:Q=4:CC=5:W(E)=W(E)+1:GOT0610 

:rem 187 
575 
580 

IFPEEK(H)=4THEN620 :rem 38 
IFH=P(T,4,E)THENP(T,4,E)=0:Q=19:CC=0:Y(E)=Y(E)+1:GOT0610 

:rem 243 
585 
590 
600 
610 
620 
630 
640 
650 
660 
680 
690 
700 

IFPEEK(H)=19THEN620 :rem 93 
NEXTT : rem 49 
POKEH,204:POKEH+CO,3:GOT0620 :rem 167 
GOSUB1200:POKEH,Q:POKEH+CO,CC :rem 40 
IFU(E)=5ANDB(E)=0THENN(F)=N(F)-1:B(E)=1 :rem 176 
IFV(E)=4ANDC(E)=0THENN(F)=N(F)-1:C(E)=1 :rem 179 
IFW(E)=3ANDD(E)=0THENN(F)=N(F)-1:D(E)=1 :rem 182 
IFY(E)=2ANDS(E)=0THENN(F)=N(F)-1:S(E)=1 :rem 214 
IFB(E)+C(E)+D(E)+S(E)=4THEN1000 :rem 129 
IFK=N(E)ANDR=7193THENR=7705:GOT0700 :rem 106 
IFK=N(E)ANDR=7705THENR=7193 :rem 97 
IFK=N(E)THENK=0:TT=E:E=F:F=TT:FORT=lT01000:NEXTT:GOSUB800 

710 PRINT"{UP}PLAYER"F"TURN"K+l"{2 SPACES}{2 
720 GOT0430 
800 SW=PEEK(648) 
810 IFSW=28THENSW=30:TS=150:GOT0900 
820 IFSW=30THENSW=28:TS=22:GOT0900 
830 STOP 
900 POKE648,SW:POKE36866,TS 
910 FORJ=0T023 
920 VS=PEEK(J+217):POKEJ+217,L%(J) 
930 L%(J)=VS 
940 NEXTJ 
950 RETURN 

:rem 170 
LEFT}" ~ : rem 250 

:rem 105 
:rem 151 
:rem 178 
:rem 129 
:rem 225 
:rem 137 

:rem 64 
:rem 182 
:rem 142 
:rem 38 

1000 PRINT"{2 DOWN}GAME OVER,PLAYER"F"WON":END 
1200 POKE36878,10 

:rem 126 
:rem 146 
:rem 143 

1210 FORT=230T0128STEP-l:POKE36876,T 
1220 NEXTT 
1230 POKE36876,0:POKE36877,200 
1240 FORT=15T00STEP-.05 
1250 POKE36878,T:NEXTT 
1260 POKE36877,0:RETURN 

202 

:rem 160 
:rem 88 

: rem 149 
:rem 116 
:rem 84 

:rem 125 



Diana N. I Rowland 

Flipper 
If you're looking for a challenge to your mental dexterity and a change of 
pace from bombs and gobblers, then "Flipper," for the unexpanded VIC, is 
for you. You can play against yourself or against a friend. Playa round once 
or replay each round until you've mastered it-or until you've given up. 
Simple but devilish! 

The screen presents you with a list of nine numbers and asks, "WHICH 
PAIR TO FLIP?" Your challenge is to get the list in numeric order, putting 
the lowest in the first position and the highest in the ninth position, by flip
ping as few pairs as possible. Once the numbers are in order, the computer 
will tell you how many turns you took and how that score compares with 
other turns, if any, with the same set of numbers. You're also offered the op
tion of repeating the same set of numbers as often as you wish or of going 
on to a new set anytime. When the computer asks, "TRY AGAIN WITH THE 
SAME NUMBERS?" type in either Y or N and hit RETURN. Start the pro
gram with RUN. 

Flipper 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

100 DIMM(10) :DIMW(9) :rem 95 
110 PRINT"{CLR}" :rem 246 
200 FORN=l T09 : rem 17 
210 M(N)=INT(RND(0)*9+1):W(N)=M(N) :rem 117 
220 IFN>lANDM(N)=M(N-1)THEN210 :rem 232 
230 NEXTN :rem 34 
240 C$="" :rem 126 
250 GOSUB1000 :rem 216 
300 T=0:IFC$<>"Y"THENZ=0 :rem 145 
3113 PRINT" {HOME}" :FORN=lT04:PRINT:NEXT:PRINT, "WHICH PAIR""" 

;SPC(l) ;"TO FLIP?":PRINT", :rem 1138 
320 INPUTA$:IFVAL(A$)=00RVAL(A$»9GOT03113 :rem 215 
3313 PRINT",:INPUTB$:IFVAL(B$) <=9ANDVAL(B$»=lGOT03513:rem 214 
340 PRINT" {HOME} ":FORT=lT018:PRINT, :NEXT:GOT03313 :rem 223 
3513 A=VAL(A$):B=VAL(B$) :rem 2 
360 T=T+1:M(10)=M(A):M(A)=M(B):M(B)=M(113) :rem 187 
3713 POKE7685+44*A,48+M(A):POKE384135+44*A,6 :rem 16 
3813 POKE7685+44*B,48+M(B):POKE384135+44*B,6 :rem 213 
4130 FORP=2T09:IFM(P)<M(P-l)GOT0310 :rem 34 
4113 NEXT :rem 212 
420 C$="":GOSUBl13013 :rem 249 
500 PRINT"{HOME}":FORN=lTOl1:PRINT,:NEXT:PRINT"YOU WON IN"", 

," ";T;"TURNS" :rem 248 
505 IFZ=130RZ=TTHEN525 :rem 71 

203 



I Logic 
and Luck 

510 
515 
520 

525 

530 
535 
540 
545 
550 
560 

IFZ>TTHENA$="BETTER" :rem 236 
IFZ<TTHENA$="WORSE " : rem 185 
PRINT", "YOUR SCORE""" "{3 SPACES}HAS"", ,ABS(Z-T) ; "TURN 
(S)"""A$;" THAN"", "YOUR BEST" :rem 184 
IFZ=TTHENPRINT","IT WAS THE"",,"SAME SCORE"",,"AS BEFO 
RE": FORN=l T04 :PRINT:NEXT : rem 200 
IFZ<>0THENPRINT" :GOT0540 :rem 75 
FORN=lT010:PRINT:NEXT:IFZ=0THENPRINT" :rem 40 
IFZ=00RZ>TTHENZ=T :rem 150 
PRINT"TRY AGAIN WITH THE", "SAME NUMBERS?" : rem 220 
INPUTC$ :IFC$="N"THENl10 : rem 81 
IFC$<> "Y"THENPRINT" {HOME}": FORT=l T019: PRINT :NEXT :GOT0550 

:rem 248 
565 GOSUB1000 
570 GOT0300 

:rem 225 
:rem 104 

1000 PRINT"{CLR}":FORN=lT09:IFC$="Y"THENM(N)=H(N) 
1010 PRINT" {HOME}" ; SPC (33) ;" {RVS} FLIPPER" 
1020 POKE7680+44*N,48+N:POKE38400+44*N,6 
1030 POKE7680+44*N+1,46:POKE38400+44*N+1,6 
1040 PRINT" {HOME}"; SPC (33) ; "FLIPPER" 
1050 POKE7685+44*N,48+M(N):POKE38405+44*N,6:NEXT 
1060 RETURN 

204 

:rem 54 
:rem 33 

:rem 184 
:rem 246 
:rem 18 

:rem 220 
:rem 167 



s~~~:ioJ~ I Poker Challenge 

"Poker Challenge" utilizes the excellent character set of the VIC to generate 
a video version of poker solitaire which can be run on the unexpanded VIC. 

Depending upon player options, from 25 to 30 cards are dealt face up, 
one at a time, and are positioned on a five row X five column array after the 
input of a two-digit row jcolumn number. The object is to produce the best 
ten poker hands composed of the five rows and five columns. Once placed in 
position, a card may not be moved, but up to 5 cards can be discarded at the 
time they are dealt by assigning them to row 0, column O. When 25 cards 
have been played, the program reports the score and type of poker hand for 
each of the five rows and five columns, as well as your total score. 

The points awarded the various poker hands are displayed on the screen 
during play, because the relative ranking differs slightly from standard poker. 
The scoring of each hand is calculated in a subroutine beginning at line 
2200. This scoring reflects the actual odds for that game. Changes in the 
scoring can be made by altering lines 1200, 1210, and 2400-2480. 

The program is a tight fit on the unexpanded VIC, so leave no un
necessary space. The game is a challenge for all members of the family. A 
score of 50 can be considered a good score. 

Poker Challenge 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

11 DIM YD%(5),ZD%(5),MY%(5,5),MZ%(5,5),DT%(4,13) :rem 180 
12 PRINT I {CLR}":H=5 :rem 187 
13 FORR=lT05:FORC=lT05:MY%(R,C)=0:CR=5:Xl=146:X2=131:X3=176+R 

:X4=176+C:GOSUB1800:NEXTC 
14 NEXT R 
15 GOSUB 1200 
16 FORI=lT04:FORJ=lT013:DT%(I,J)=0:NEXTJ,I 
17 DX%=0:XY=RND(-TI) 
18 IF DX%=25 THEN 27 
19 Y%=INT(RND(1)*4)+1:Z%=INT(RND(1)*13)+1 
20 IF DT%(Y%,Z%)<>0 THEN 19 
21 DT%(Y%,Z%)=l 
22 GOSUB 1500 
23 GOSUB 1300 
24 GOSUB 1800 
25 MY%(R,C)=Y%:MZ%(R,C)=Z% 
26 GOTO 18 
27 R=6:C=7:CR=1:TT=0:GOSUB 1800 
28 FOR KK=l T010 
29 IF KK>5 THEN 40 
30 FOR KL=l T05 
31 YD%(KL)=MY%(KK,KL):ZD%(KL)=MZ%(KK,KL) :NEXT 
32 GOSUB 2200 

KL 

:rem 238 
:rem 246 
:rem 169 
:rem 104 
:rem 189 
:rem 245 

:rem 3 
:rem 107 

:rem 8 
:rem 170 
:rem 169 
:rem 175 
:rem 211 

:rem 10 
:rem 46 
:rem 89 

:rem 150 
:rem 39 

:rem 104 
:rem 169 

205 



Logic 
and Luck 

33 IFKK=lTHEN PRINT" {HOME} {BLK} "TAB ( 12- (WT< 10) ) : WT :GOTO 37 
:rem 176 

34 MM=3* (KK-l)-l 
35 PRINT"{HOME}":FOR LI=l TO MM:PRINT:NEXT 
36 PRINT TAB(12-(WT<10)):WT 
37 PRINT" {HOME}": FORL=l T016 :PRINT :NEXT 
38 PRINT"ROW":KK:"{15 SPACES}" :PRINTA$:PRINT"HIT 

:rem 62 
:rem 237 
:rem 45 

:rem 115 
ANY KEY 

{10 SPACES}" :GOSUB2500 
39 NEXT KK 
40 FOR KL=l T05 

:rem 242 
:rem 65 
:rem 40 

41 YD%(KL)=MY%(KL,KK-5):ZD%(KL)=MZ%(KL,KK-5):NEXT 
42 GOSUB 2200 

KL :rem 45 
:rem 170 
:rem 76 
:rem 98 

:rem 152 

43 PRINT"{HOME}":FORLI=lT014:PRINT:NEXT LI 
44 PRINT TAB(-(WT<10)+3*(KK-6)) :\Il':PRINT 
45 PRINT"COLUMN":KK-5:{13 SPACES}" 
46 PRINT A$ :PRINT"HIT ANY KEY{ 10 SPACES}" :GOSUB 2500:NEXT KK 

:rem 173 
:rem 189 
:rem 111 

47 PRINT" {HOME}" :FOR LI=lT016 :PRINT:NEXT 
48 PRINT "YOUR TOTAL SCORE": TT 
49 PRINT"PUSH ANY KEY FOR A{2 SPACES}" 
50 PRINT"NEW GAME{11 SPACES}":PRINTTAB(18)"{3 

: rem 
SPACES} " 

119 

:rem 214 
51 GOSUB 2500 :rem 173 
52 CLR:GOTO 11 :rem 29 
1200 PRINTTAB (17)" {BLK} PTS. ":PRINTTAB( 1 7) "SF30" :PRINTTAB (17)" 

4K16": PRINTTAB (17)" S12" : rem 66 
1210 PRINTTAB(17)"FH10":PRINTTAB(17)"3K 6":PRINTTAB(17)" F 5" 

:rem 121 
1215 
1220 
1300 
1310 
1320 

1330 

1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1500 
1510 
1520 
1530 
1540 

206 

PRINTTAB(17)"2P 3":PRINTTAB(17)"lP I" 
RETURN 
PRINT" {HOME}" : FORJ=l T019 :PRINT:NEXT 
IFH<0THENH=0 
PRINTH: "DISCARDS REMAIN" :PRINT" RC=00 

:rem 44 
:rem 165 
:rem 206 
:rem 236 

FOR DISCARD" 
:rem 65 

PRINT" {5 UP} YOUR NEXT CARD IS" :PRINT" TO POSITION IT 
{4 SPACES} {RVS} {GRN} RC { OFF} {BLK} " 
INPUT" HIT 2 DIGIT RC #":RC$ 
IFRC$="00"THEN 1400 
R$=LEFT$(RC$,l):R=VAL(R$) 
C$=RIGHT$ (RC$ ,1) :C=VAL( C$) 
IF MY%(R,C)<>0GOT01300 
RETURN 
H=H-l 
IFH>=0THENDX%=DX%-1:GOT018 
GOTO 1300 
DX%=DX%+l 
IF Y%<3THENCR=0 
IF Y%>2 THENCR=2 
IF Z%=l THEN Xl=129 
IF Z%>l AND Z%<10{5 SPACES}THEN Xl=Z%+176 

:rem 88 
:rem 208 
:rem 230 
:rem 166 
:rem 205 
:rem 223 
:rem 173 
:rem 240 
:rem 112 
:rem 196 
:rem 225 
:rem 116 
:rem 120 
:rem 214 
:rem 115 



Logic I 
and Luck 

1550 IFZ%=10THENXl=152 :rem 4 
1560 IFZ%=11THENXl=138 :rem 10 
1570 IFZ%=12THENXl=145 :rem 10 
1580 IFZ%=13THENXl=139 :rem 15 
1590 X2=160:X3=160 :rem 198 
1600 IFY%=lTHENX4=216 :rem 211 
1610 IFY%=2THENX4=193 :rem 217 
1620 IFY%=3THENX4=218 :rem 217 
i630 IFY%=4THENX4=211 :rem 212 
1640 R=6:C=7:GOSUB1800 :rem 4 
'1650 RETURN : rem 172 
1800 A=38423+3*(C-l)+66*(R-l):B=7703+3*(C-l)+66*(R-l) :rem 77 
1810 POKEA,CR:POKEA+l,CR:POKEA+22,CR:POKEA+23,CR :rem 183 
1820 POKEB,Xl:POKEB+l,X2:POKEB+22,X3:POKEB+23,X4:RETURN 

:rem 172 
2200 J=B:JF=12:JS=10 :rem 90 
2210 FOR K=lT05 :rem 61 
2215 FOR M=lT05 :rem 68 
2220 IFZD%(M)=ZD%(K) THEN J=J+l :rem 174 
2230 NEXT M:NEXT K : rem 23 
2245 ON -(J=5)-2*(J=7)-3*(J=9)GOTO 2250,2410,2420 :rem 192 
2247 ON -(J=11)-2*(J=13)-3*(J=17) GOTO 2440,2450,2470 :rem 85 
2250 FORW=2T05:IFYD%(W)<>YD%(1)THENJF=0 :rem 107 
2260 NEXT W :rem 96 
2285 FOR K=lT010 :rem 117 
2290 FOR M=lT05 :rem 71 
2295 IF ZD%(M)=KTHEN 2310 :rem 63 
2300 NEXT M :rem 81 
2305 NEXT K :rem 84 
2310 IF K=l THEN 2340 :rem 6 
2315 FOR M=lT05:IFZD%(M»K+4THEN2335 :rem 83 
2320 NEXT M :rem 83 
2330 J=JS+JF:GOTO 2399 :rem 241 
2335 J=JF:GOTO 2399 :rem 46 
2340 TL=0 :rem 214 
2345 FORM=lT05:IFZD%(M»5THEN2365 :rem 228 
2350 NEXT M :rem 86 
2360 J=JS+JF:GOT02399 :rem 244 
2365 FORM=lT05:IFZD%(M)<10THENTL=TL+1 :rem 25 
2375 NEXT M :rem 93 
2380 IF TL=l THEN 2390 :rem 103 
2385 J=JF:GOT02399 :rem 51 
2390 J=JS+JF:GOT02399 :rem 247 
2399 ON -(J=5)-2*(J=10)-3*(J=12)-4*(J=22)GOT02400,2460,2430,2 

480 :rem 226 
2400 WT=B:A$="NOTHING: 00 POINTS{3 SPACES}":RETURN :rem 167 
2410 wr=1:TT=TT+l:A$="0NE PAIR: 01 POINT{3 SPACES}":RETURN 

:rem 113 
2420 WT=3:TT=TT+3:A$="TWO PAIR: 03 POINTS{2 SPACES}":RETURN 

:rem 227 

207 



I Logic 
and Luck 

243121 WT=5:TT=TT+S:A$="FLUSH: 1215 POINTS{5 SPACES}":RETURN 
:rern 7121 

244121 WT=6:TT=TT+6:A$="3 OF A KIND: 1216 PTS. ":RETURN :rern 63 
245121 wr=1121:TT=TT+1121:A$="FULL HOUSE: 1121 POINTS":RETURN:rern 21219 
246121 WT=12:TT=TT+12:A$="STRAIGHT: 12 POINTS{2 SPACES}":RETURN 

:rern 135 
247121 WT=16:TT=TT+16:A$="4 OF A KIND: 16 PTS. ":RETURN:rern 166 
248121 wr=3121:TT=TT+3121:A$="STR. FLUSH: 3121 POINTS":RETURN:rern 21214 
25121121 GET A$ :rern 12 
251121 IF{2 SPACES}A$=""THEN 25121121 :rern 51 
252121 RETURN :rern 169 

208 



Chapter 
Seven 

Mazes 





John Clopton I 
and 

Doug Thorsvik He i st 

You have just blasted through the bottom level of an underground vault. 
Your blast into the vault has set off a 90-second fail-safe alarm. You will 
have to blast walls to make your way through the different levels. If you 
don't make it out in time, the security guards will be upon you. 

There are three levels, each with more moneybags and more alarms. To 
move from one level to another, exit from your present level through the 
opening at the bottom. If you run into an alarm or blast beside one, you'll be 
caught, and the money will be returned to the vault. 

Use the joystick to race through the levels and collect as many $100 
moneybags as possible within the time frame, but don't be too greedy. 

Heist 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

5 PRINT"{CLR}SETTING UP ... " :rem 230 
10 FORI=7168T07679:POKEI,PEEK(I+25600):NEXT :rem 98 
15 POKE36869,255:HS=0 :rem 175 
20 READN:IFNTHENFORN=NTON+15:READA:POKEN,A:NEXT:GOT020:rem 93 
25 S=0:A=374:B=7724:C=30720:W=0:S1=5:S2=3:V=0:Q=1 :rem 19 
30 PRINT"{CLR}{HOME}{RED}{RIGHT}LEVEL":Q:PRINT"{UP}{13 RIGHT} 

HS:$":HS :rem 251 
35 IFW=3THEN605 :rem 136 
40 POKE36879,29 :rem 59 
45 GOSUB190 :rem 131 
50 Z=7712:FB=0 :rem 252 
55 POKEZ,32 :rem 132 
60 IFJ4THEN60 :rem 8 
65 IFTI$>"000130"THEN385 :rem 48 
70 IFJ1THENZ=Z+22:IFPEEK(Z)=61THENZ=Z-22 :rem 14 
75 IFPEEK(Z)=42THENZ=Z-22 :rem 31 
80 IFJ2THENZ=Z-1:IFPEEK(Z)=61THENZ=Z+1 :rem 170 
85 IFPEEK(Z)=42THENZ=Z+1 :rem 235 
90 IFJ3THENZ=Z-22:IFPEEK(Z)=610RZ<7680THENZ=Z+22 :rem 30 
95 IFPEEK(Z)=42THENZ=Z+22 :rem 31 
100 IFJ0THENZ=Z+1:IFPEEK(Z)=61THENZ=Z-1 :rem 209 
105 IFPEEK(Z)=42THENZ=Z-1 :rem 22 
110 IFPEEK(Z)=45THENGOSUB385 :rem 230 
115 IFPEEK(Z)=44THENS=S+100:GOSUB585 :rem 197 
120 IFFBTHENGOSUB445 :rem 246 
125 PRINT"{HOME}{21 DOWN}{14 RIGHT}":TI$ :rem 115 
130 PRINT"{HOME}{21 OO\m}{7 RIGHT}":S :rem 54 
135 POKEZ,59:POKEZ+30720,6 :rem 8 
140 IFZ=8108THENSl=Sl+5 :S2=S2+2 :H=W+l :Q=Q+l :GOT030 : rem 10 
145 DD=37154:Pl=37151:P2=37152 :rem 87 
150 POKEDD,127:P=PEEK(P2)AND128:J0=-(P=0) :rem 108 
155 POKEDD,255:P=PEEK(Pl) :rem 216 

211 



Mazes 

160 J1=-«PAND8)=0) :rem 230 
165 J2=-«PAND16)=0) :rem 27 
170 J3=-«PAND4)=0) :rem 229 
175 FB=-«PAND32)=0) :rem 38 
185 GOT055 :rem 65 
190 FORR=0T02:POKE7689+R,42:NEXTR :rem 54 
195 FORR=0T02:POKE7689+R+C,0:NEXTR :rem 115 
200 X=7702 :rem 247 
205 FORI=lT022 :rem 60 
210 POKEX,42:POKEX+C,eJ:X=X+1:NEXTI :rem 124 
215 POKE7712,32 :rem 41 
22eJ X=7724 :rem 253 
225 FORI=lT018 :rem 67 
23eJ FORJ=lT02 : rem 9 
235 POKEX,42:POKEX+C,eJ:X=X-1:NEXTJ :rem 134 
240 X=X+24:NEXTI :rem 214 
245 X=8098 :rem 9 
250 FORI=lT022 : rem 6eJ 
255 POKEX,42:POKEX+C,eJ:X=X+1:NEXTI :rem 133 
26eJ POKE8108,32 :rem 41 
265 FORR=eJT02:POKE8129+R,42:NEXTR :rem 47 
270 FORR=eJT02:POKE8129+R+C,eJ:NEXTR :rem 99 
275 FORI=lT016eJ :rem 118 
28eJ X=INT(RND(l)*A)+B :rem 169 
285 IFPEEK(X)=61THEN28eJ :rem 1eJ5 
290 IFPEEK(X)=42THEN28eJ :rem 1eJeJ 
295 POKEX,61:POKEX+C,0:NEXTI :rem 7 
3eJeJ FORI=lTOS1 :rem 88 
3eJ5 X=INT(RND(l)*A)+B :rem 167 
31 eJ IFPEEK(X)=61THEN305 :rem 92 
315 IFPEEK(X)=42THEN305 :rem 96 
32eJ IFPEEK(X)=45THEN3eJ5 :rem 95 
325 POKEX,45:POKEX+C,2:NEXTI :rem 5 
33eJ POKE7734,32:POKE7756,32:POKE8eJ86,32 :rem 2eJ6 
335 FORI=lTOS2 :rem 97 
34eJ X=INT(RND(l)*A)+B :rem 166 
345 IFPEEK(X)=61THEN34eJ :rem 99 
35eJ IFPEEK(X)=42THEN34eJ :rem 94 
355 IFPEEK(X)=45THEN34eJ :rem 1eJ2 
36eJ IFPEEK(X)=44THEN34eJ :rem 97 
365 POKEX,44:POKEX+C,5:NEXTI :rem 11 
37eJ PRINT" {B'LU} {HOME} {21 DOWN} {RIGHT}LOOT:$" :rem 187 
375 IFW=eJTHENTI$="eJ0eJeJeJeJ" :rem 131 
380 RETURN :rem 123 
385 FORT=lT02eJ:V=1:POKE36878,15 :rem 87 
3913 FORL=l T01eJ :rem 65 
395 FORM=250T024eJSTEP-1 :rem 124 
4eJeJ POKE36876,M :rem 74 
4eJ5 POKE36879,26:NEXTM :rem 51 
41eJ FORM=24eJT025eJ :rem 214 
415 POKE36876,M:POKE36879,41:NEXTM :rem 33 

212 



Mazes 

420 POKE36B76,0:NEXTL :rem 244 
425 POKE36B7B,0 :rem 54 
430 PRINT" {BLK} {CLR} {2 DOWN} {RIGHT}YOU GOT CAUGHT WITH": PRINT 

"{7 RIGHT}$"rS :rem 49 
435 GOT0615 :rem 113 
445 IFPEEK(Z-1)=45THENV=1 :rem 243 
450 IFPEEK(Z-1)=42THEN465 :rem 199 
455 POKEZ-1,43:POKEZ-1+C,4 :rem 7 
460 IFPEEK(Z+1)=45THENV=1 :rem 23B 
465 IFPEEK(Z+1)=42THEN4B0 :rem 200 
470 POKEZ+1,43:POKEZ+1+C,4 :rem 0 
475 IFPEEK(Z+22)=45THENV=1 :rem 39 
4B0 IFPEEK( Z+22 )=42THEN495 : rem 254 
4B5 POKEZ+22,43:POKEZ+22+C,4 :rem 10B 
490 IFPEEK(Z-22)=45THENV=1 :rem 3B 
495 IFPEEK(Z-22)=42THEN505 :rem 254 
500 POKEZ-22,43:POKEZ-22+C,4 :rem 100 
505 POKE36B77,220 :rem 152 
510 FORL=15T00STEP-1 :rem 217 
515 POKE36B7B,L :rem B2 
520 FORT=lT025:NEXT :rem 195 
525 NEXTL : rem 39 
530 POKE36B77,0:POKE36B7B,0 :rem 7 
535 IFV=lTHEN3B5 :rem 191 
540 IFPEEK(Z-1)=42THEN550 :rem 194 
545 POKEZ-1,32 :rem 22 
550 IFPEEK(Z+1)=42THEN560 :rem 194 
555 POKEZ+1,32 :rem 21 
560 IFPEEK(Z+22)=42THEN570 :rem 247 
565 POKEZ+22,32 :rem 73 
570 IFPEEK(Z-22)=42THEN5B0 :rem 251 
575 POKEZ-22,32 :rem 76 
5B0 POKEZ,59:RETURN :rem 21B 
5B5 POKE36B7B,15 :rem 115 
590 FORL=10T01STEP-1 :rem 221 
595 POKE36B74,L*25:NEXTL :rem 172 
600 POKE36B74,0:POKE36B7B,0:RETURN :rem 2B 
605 POKE36B79,30 :rem 106 
610 PRINT"{CLR}{2 DOWN}{RIGHT}YOU MADE IT OUT WITH":PRINT" 

{7 RIGHT}{RED}$":S"{BLU}" :rem 3B 
615 IFV=lTHENGOT0625 :rem 244 
620 IFS>HSTHENHS=S :rem 173 
625 PRINT" {2 DOWN} {2 RIGHT}HIGH SCORE: $" :HS : rem 154 
630 PRINT" {2 DOWN} {RIGHT} PRESS ANY KEY TO GO": PRINT" {7 RIGHT} 

AGAIN!" :rem 151 
635 GETA$ :IFA$=" "THEN635 : rem 95 
640 GOT025 :rem 5B 
645 DATA 7504 ,255,231,255,165,165,255,231,255,66,36,0,195,0, 

36,66,0 :rem 246 

213 



I Mazes 

65a DATA 7632 ,a,a,a,l6,a,a,l6,a,24,24,6a,l26,l89,6a,36,la2 
: rem 4 

655 DATA 752a ,l26,6a,l26,23l,239,247,23l,l26,ll2,25l,25l,25a 
,ll6,4a,1l2,248 :rem laS 

66a DATA 7648 ,a,a,a,a,a,a,a,a,255,23l,255,l65,l65,255,23l,25 
5 : rem 163 

665 DATA a : rem 235 

214 



cort~; I Diamond Maze 

"Diamond Maze" is a maze game for the unexpanded VIC and requires a 
joystick. When the game begins, you find yourself in a dark maze trying to 
locate diamonds for your kingdom. You are provided with a small oil lamp 
to help you find your way inside the dark mazes. The oil in the lamp is lim
ited, so you must try to get as many diamonds as you can before the light 
runs out. When it does, the quest is over. 

The lamp will light the part of the maze that you are in as you move. 
What lies in any direction is unknown to you until you move in that direc
tion. Once you make contact with a diamond, you are automatically trans
ported to another and completely different maze where you continue your 
search for the next diamond. These diamonds glow brightly, so you will 
know their locations. By using the joystick to move in any available direc
tion, you must find the quickest route. Each maze is numbered in the lower
right corner. This number represents the diamond number that you are going 
after. The amount of oil left in the lamp is also indicated on the right side of 
the screen. The indicator starts at the top and continues downward until it 
reaches the bottom of the screen, at which time the quest ends. 

I Making Mazes 
In order to generate the maze quickly, this program uses a machine language 
subroutine. The maze is generated in the blink of an eye so that when you 
go from one maze to another, you will barely notice that the maze has 
changed. Any knowledge of the previous maze is of little use since each 
maze is different. 

Lines 800-999 are the BASIC loader and DATA statements for the ma
chine language maze-generating subroutine. This subroutine is loaded into 
the cassette buffer. Lines 60-640 initialize the screen to reverse spaces with a 
border. This is required by the machine language subroutine to determine 
the boundaries of the maze. These lines can be used to create your own 
mazes. The rest of the lines are used to implement the Diamond Maze logic. 

Diamond Maze 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 SC=99 :rem 118 
20 GOSUB700:GOT0230 :rem 129 
30 POKEDD,127:J=(PEEK(D1)AND60)OR(PEEK(D2)AND128) :POKEDD,255 

:rem 27 
40 V=((JAND16)=0)-((JAND128)=0)+(((JAND4)=0)-((JAND8)=0))*22 

:rem 121 
50 B=A+V:IFPEEK(B)=90THENF=1:POKES1,220:GOT080 :rem 56 

215 



Mazes 

60 IFTI>T2THENT2=TI+TK:POKET+C,6:T=T+22:POKET+C,1:IFT>TMTHEN2 
00 :rem 47 

70 IFPEEK(B)<>32THEN30 :rem 31 
80 POKESl,240:POKEA,32:POKEB,81:POKESl,0 :rem 161 
90 FORI=0T08:POKEA+T(I)+C,6:NEXT:A=B :rem 231 
100 FORI=0T08:POKEA+T(I)+C,5:NEXT:IFF=0THEN30 :rem 34 
110 F=0:M=M+l:GOSUB600:TK=360-M*30:GOT0100 :rem 188 
200 PRINTCHR$( 19) j CHR$( 158) j" GN1E OVER" j :POKE36879, 238 

210 FORI=0T08:POKEA+T(I)+C,1:NEXT 
220 IFPEEK(197)=64THEN220 
230 M=1:TI$="000000":TK=360 
240 T2=TI+TK:T=7701:GOSUB600:GOT0100 
600 PRINTCHR$(19)jCHR$(31)jCHR$(18)j 
610 PRINT"*********************."j 
620 FORI=l T021 :PRINT "-{ 19 SPACES}-." j :NEXT 
630 PRINT"*********************"j 
640 POKE8185,48+M:POKE818S+C,1 
650 SYS828:POKE36879,110:POKEA,81:POKET+C,1 
660 X=INT(RND(1)*18)+2:Y=INT(RND(1)*19)+2 
670 B=7680+Y*22+X:IFA=BTHEN660 
680 POKEB,90:POKEB+C,7:RETURN 
700 DD=37154:D2=DD-2:Dl=37137:C=30720:A=7680+23 
710 T(0)=-23:T(1)=-22:T(2)=-21:T(3)=-1:T(4)=0 
720 T(5)=1:T(6)=21:T(7)=22:T(8)=23 
730 POKE36878,15:S1=36876:TM=8141 
800 B=828:REM BASIC LOADER 
810 READD:IFD<0THENRETURN 
820 POKEB,D:B=B+1:GOT0810 
828 DATA169,30,133,169,169,23,133,168,160,0 
838 DATA145,168,173,36,145,101,167,109,40,145 
848 DATA41,3,133,166,133,167,170,32,169,3 
858 DATA201,32,176,32,169,160,209,170,208,26 
868 DATA232,138,145,170,165,170,133,168,165,171 
878 DATA133,169,165,166,9,4,170,32,169,3 
887 IFSC<3THENPOKE7701+Y*22+C,3 
888 DATA169,32,145,170,208,202,230,166,165,166 
898 DATA41,3,133,166,197,167,208,204,177,168 
908 DATA133,166,169,32,145,168,165,166,201,5 
918 DATA176,43,9,8,170,202,32,169,3,165 
928 DATA170,133,168,165,171,133,169,208,159,24 
938 DATA189,196,3,48,10,101,168,133,170,165 
948 DATA169,105,0,208,8,101,168,133,170,165 
958 DATA169,233,0,133,171,96,2,212,254,44 
968 DATA255,22,1,234,254,44,2,212 
999 DATA -1 

216 

:rem 89 
:rem 18 

:rem 164 
:rem 155 
:rem 174 

:rem 1 
:rem 145 
:rem 227 
: rem 101 
:rem 185 

:rem 59 
:rem 38 

:rem 218 
:rem 58 

:rem 248 
:rem 37 

:rem 6 
:rem 90 

:rem 240 
:rem 129 
:rem 222 
:rem 132 
:rem 232 

: rem 27 
:rem 178 
:rem 80 

:rem 250 
:rem 71 
:rem 30 

:rem 200 
:rem 186 
:rem 190 

:rem 34 
:rem 136 
:rem 127 
:rem 29 

:rem 137 
:rem 35 



Edward I 
Tekeian Meltdown 

Your goal in "Meltdown," for the unexpanded VIC with a joystick, is to pre
vent a meltdown at the local power plant. You have 45 seconds to capture a 
capsule of nuclear fuel. Then you must weave your way through automatic 
defenses, reach the core of a nuclear reactor, and deliver the fuel capsule to 
prevent meltdown of the reactor. There is one hitch, however; once you drop 
off your fuel, you will only have delayed a meltdown for another 45 sec
onds. In order to stabilize the reactor and permanently stop meltdown, you 
must deliver 20 units of fuel to the core, and each one must be delivered 
within 45 seconds. Should you fail to deliver even a single capsule in the 
allotted time or lose all of your lives (you have three lives with a bonus life 
after ten capsules have been delivered), the reactor immediately goes 
meltdown and you lose the game. 

You must pilot a Tritron Megatank around the screen to pick up fuel. 
The Tritron can move quickly in four directions, but it has one potentially 
dangerous or useful feature. When the joystick is in the neutral position, the 
Tritron will move to the right, heading for the reactor wall. It will continue 
until it hits one of the obstacles or until it hits the reactor wall. Although this 
is a hazard, it can also be used for speedy movement through clear zones. 
The last control is the fire button which, when pressed, will cause the Tritron 
to stop at a dead halt. By quickly pressing and releasing the button, you can 
cause a slow step-by-step movement, which is good for maneuvering 
through thickly cluttered areas of mines. 

I Obstacles 
There are three obstacles which will destroy one of your tanks upon contact 
and also cost you precious time. The electric mines, which are cross-shaped 
characters spread out all over the screen, are your worst enemies, because 
you must carefully maneuver through them during all phases of the game. 
The other two obstacles are the red walls at the top and bottom of the screen 
and the left reactor wall. Any attempt to scroll off the left side of the screen 
at a spot other than the entrance to the reactor will cause instant destruction. 

Entering the left side entrance will place you just above the core. This is 
the rear entrance and can be used if the regular entrance is blocked. It is also 
worth noting that touching the core without having captured fuel will de
stroy you. 

I A Few Words About Fuel 
On each screen a red-and-white striped block will appear. This is the fuel 
you must collect. You need only touch it in order to capture it. Once you 

217 



Mazes 

have the fuel, a red diamond will appear in the upper-right side of the 
screen. This means that you can safely enter the reactor core. Once you cap
ture a fuel capsule, it is yours until you reach the reactor. If you are de
stroyed then, you will be transported to the starting spot on the screen 
(minus a life) with a penalty of having time added to your score. 

I A Few Final Rules 
As you progress through the screens, the level of difficulty increases so that 
the number of mines and warp discs will increase. Your starting position for 
each screen is the upper-left corner of the playfield facing the right reactor 
wall. You will also appear there after an explosion and at the start of each 
level. 

Meltdown 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 POKE 36879,8 :rem 213 
2 PRINT" {CLR} {2 OOHN} {5 RIGHT} gL~MNEK~ELTDOWgL~MEJ~" :POKE 368 

78,15 - - :rem 77 
3 FORG=118T0245:POKE36876,G:POKE36876,0:NEXT :rem 172 
4 F=62:S1~36875:E=30720:H=0:N=3:B=30 :rem 226 
5 PRINT"{CLR}" :rem 153 
6 POKE38401,5 :rem 198 
8 FOR T=7680T07768:POKE T,255:POKE T+E,0:NEXT :rem 139 
10 FOR S=7790T08163:POKE S,96:NEXT :rem 244 
11 PRINT"{HOME}FUEL UNITS:";H :rem 194 
12 Q=7790:POKE36879,255 :rem 10 
13 IFH=2THENB=60:IFH=4THENB=90:IF=H=8THENB=120:IFH=12THENB=16 

0:IFH=16THENB=200 :rem 70 
15 FORG=ITOB:I=7834+INT(RND(I)*380)+I:POKE I,87:POKEI+E,4:NEX 

TG : rem 250 
16 FORK=ITOB:Z=7790+INT(RND(I)*380)+I:POKEZ,65:POKEZ+E,15:NEX 

TK : rem 101 
17 FOR U=7789T08189 STEP 22:POKE U,95:POKE U+E,12:NEXT 

:rem 107 
18 FOR A=0T021:POKE7768+A,III:POKE8164+A,III:POKE7768+A+E,2:P 

OKE8164+A+E,2:NEXT :rem 73 
20 D=7870+INT(RND(I)*294)+I:POKED,102:POKED+30720,234:rem 176 
21 POKE7986,118:POKE7987,119:POKE8030,118:POKE8031,III:POKE80 

09,42:POKE38728,6 :rem 214 
22 TI$="000000" :rem 198 
23 PRINT"{HOME}{3 DOWN}TRITRON8:";N :rem 196 
24 Q=7790:POKEQ,F:POKEQ+E,15 :rem 179 
25 J=PEEK(37151):POKEQ,F:POKE Q+E,15 :rem 77 
28 PRINT"{HOME}{OOHN} TIME:"TI$ :rem 137 
29 IFJ=110THENQ=Q-l:POKEQ+l,32:POKEQ+E,15:F=60:POKE 81,150 

:rem 180 
30 IFJ=1260RJ=127THENQ=Q+l:POKEQ-l,32:POKEQ+E,15:F=62:POKE SI 

,150 :rem 119 

218 



Mazes I 
31 IFJ=118THENQ=Q+22:POKEQ-22,32:POKEQ+E,15:POKE 51,130 

: rem 246 
33 IF J=122 THENQ=Q-22:POKEQ+22,32:POKEQ+E,15:POKESl,210 

34 POKE 51,0 
38 IF PEEK(Q)=102 THEN 200 

:rem 242 
:rem 118 

:rem 82 
39 IF PEEK(Q)=42 AND PEEK(7744)=90 GOTO 400 
41 IFPEEK(Q)=42 ANDPEEK(7744)<>90GOTO 100 
42 IFPEEK(Q)=111THEN 100 

:rem 247 
:rem 42 
: rem 76 
:rem 37 43 IFPEEK(Q)=65THEN100 

44 IFPEEK(Q)=87THEN 320 
45 IFTI$="000045"THEN 100 
47 IF PEEK(Q)=118THEN100:IF PEEK(Q)=119 

THEN100 
49 IFPEEK(Q)=95THEN100 
50 GOTO 25 
100 POKE36878,15 
102 POKE36877,255 
103 FORX=lT0255 STEP2:POKE36879,X:NEXT 
105 POKE 36877,0 
107 N=N-l:IFN=-lTHEN125 
109 IFTI$=>"000035"THEN 125 
110 GOTO 23 

:rem 46 
:rem 35 

THEN100:IFPEEK(Q)=111 
:rem 160 
:rem 46 

:rem 5 
: rem 98 

:rem 153 
:rem 101 

:rem 48 
:rem 72 

:rem 152 

125 PRINT" {6 DOWN} {6 RIGHT} {RED}QQQQQQQQ" :PRINT" {6 
:rem 48 

DOWN} 
{3 RIGHT} {RED} EL}MNEK}ELTDOWffiMEK)" 

126 POKE36878,15:FORT=200T0255:POKE36877,T:NEXT 
128 FOR K=lT0500:NEXT 
129 GOTO 125 
140 :IFH=16THENB=+190 

:rem 234 
:rem 94 

:rem 236 
:rem 109 
: rem 189 

160 POKE36878,15:PRINT"{CLR}{9 DOWN} MISSION ACOMPLISHED: 
{3 SPACES} MELTDOWN ABORTED" 

162 C=INT(RND(1)*255)+1 
164 S=INT(RND(1)*50)+175 
166 POKE36879,C 
167 POKE36875,S 
168 FORT=IT0100:NEXTT 
169 GOTO 162 
200 POKE7744,90:POKE 7744+E,2 
201 POKE 36878,15:POKE36874,230:FORM=lT050:NEXT 
202 POKE36874,0 
203 GOTO 25 
320 Q=Q-7:POKEQ,81:POKEQ+7,32 
321 POKE36878,15:POKE36876,220 
322 FORJ=lT050:NEXT 
323 POKE36876,0:GOTO 25 
400 POKE 36878,15 
401 FORK=128 TO 255:POKE36874,K:NEXT 
402 POKE 36874,0 
430 H=H+l 
433 IFH=20THEN 160 
434 IFH=10THENN=N+l 
435 POKE7744,32:GOT010 

:rem 143 
: rem 221 

:rem 36 
:rem 76 
:rem 89 
:rem 73 

:rem 114 
:rem 57 

:rem 247 
:rem 43 
:rem 53 

:rem 212 
:rem 158 
:rem 183 

:rem 11 
:rem 101 

:rem 67 
:rem 45 

:rem 192 
:rem 214 
: rem 116 

: rem 6 

219 



Ulrich 
Merten 

Ratsl An Artificial 
Intelligence 
Simulation 

Artificial intelligence, or AI, is the use of machines, especially digital comput
ers, to perform tasks usually thought of as requiring intelligence when per
formed by humans. Interest in the subject was intense in the 1950s, when 
the potential of large computing machines was first being explored. Early 
successes were achieved with a program which proved theorems in symbolic 
logic, and with others which played creditable games of chess and checkers, 
but the immensity of the task of imitating human thought soon became 
apparent. 

The databases demanded by these AI systems, and the complexity of the 
programs used to manipulate these databases, militate against their practical 
implementation in the present generation of microcomputers. It is, neverthe
less, possible to make a simulation on the microcomputer which illustrates 
the methods of AI. In "Rats!," which is such a simulation for a VIC with 8K 
memory expansion, a rat solves a maze on the screen, in much the same way 
that an AI program seeks the solution to a problem. 

I Principal Features of AI Systems 
The first step in using an AI system is to define the task to be performed as 
precisely as possible, specifying both the starting point and the goal. 

Our rat starts from a specific position on the screen. Its target (perhaps a 
piece of cheese?) is hidden in a maze, and its goal may be only to reach the 
target, to reach the target as quickly as possible, or to find the shortest route 
to the target. Attaining one of these goals may require a somewhat different 
approach from that required to attain another, and in all cases, there may be 
more than one solution. 

Getting from the starting position to the goal requires, in general, 
searching an information space, where each move adds something to our 
knowledge about that space. Practical AI systems tend to call upon very 
large, multidimensional databases. In our simulation, the information re
quired is quite simple: Each of 506 locations on the screen is either closed or 
open, except two, which are marked as the starting position and the target, 
respectively. By determining which positions are open and how they are con
nected to other positions which are open, our rat can find its way to the 
target. 

220 



Mazes I 
The organization of the information space can be of critical importance 

to the efficiency of an AI program. It is important to search the most signifi
cant space first and to be able to respond to new information without exces
sive backtracking through familiar territory. Our rat has ready access to 
information about its immediate environment, but no way, in most cases, of 
finding out about more distant points. Clearly, information about more dis
tant parts of the maze, perhaps a road sign or two, would be useful, but the 
increase in the complexity of the information space necessary to provide this 
input is considerable. 

Search through information spaces tends to become lengthy as the space 
expands, because each new point visited can lead to several possible next 
moves. If the resulting combinatorial explosion is to be kept in hand, it is 
essential that whatever constraints exist on the solution be applied at the 
earliest possible point. The most obvious constraint on the solution of our 
problem is that the target is somewhere on ~he screen. Our rat is constrained 
to investigate the 506 screen positions and those positions only. If the right 
constraints were not in the program, the rat would investigate memory loca
tions that have no relation to the screen positions and therefore sure to be 
unrewarding. 

I Search Strategies 
A central feature of every AI program is its search strategy. A highly in
efficient strategy, but one which will eventually explore all points in the 
available information space, is a random walk from one point in that space 
to any other which is accessible from the first, and so on. Among the more 
efficient alternatives are the breadth-first and depth-first strategies. Our rat 
can illustrate both of these. 

With the breadth-first strategy the rat will travel the same distance down 
each available path, in rotation, going one step further each time it traverses 
a given path. In this fashion it is sure to find the shortest route to the target; 
but it may go through a great deal of wasted motion in the process. 

For a depth-first search the rat will explore a given path until the path 
comes to an end or until the rat reaches the goal; then the rat moves to the 
next available path if it was unsuccessful. In many situations this strategy is 
more efficient than the breadth-first strategy. But there is no guarantee that 
the path found will be the shortest one possible. A great deal of time can be 
wasted in cases where a short path exists, but along with much longer 
successful paths and/or dead ends. 

Many more sophisticated strategies are available. The branch-and-bound 
strategy, for instance, combines some of the strengths of the depth-first and 
the breadth-first approaches. The path of the rat following a simple branch
and-bound requires that it proceed down an available route until a branch 

221 



Mazes 

point is reached. Then the rat reviews the available data and continues along 
a path emanating from the previously discovered intersection which is clos
est to the starting point, and from which an unexplored path is still available. 
This branch-and-bound approach is also sure to find the shortest route to the 
goal, and frequently with much less wasted motion than is inherent in the 
breadth-first search. 

As we have already indicated, searches can be more efficient when 
information about more distant parts of the information space is available. In 
particular, the branch-and-bound strategy can be improved if some estimate 
can be made of the remaining distance to the target, and if the choice of path 
can be based on an estimate of the total path length rather than on knowl
edge of the distance already traveled. This modified strategy will find the 
shortest path provided that the estimate is always less than or equal to the 
remaining distance. It will further reduce the amount of search required if 
the estimates are accurate than if they are inaccurate. (An estimate of zero 
remaining distance always meets the requirement that it be less than the ac
tual remaining distance, but provides no improvement over the original 
strategy.) 

We can illustrate the impact of an estimate by attributing a sense of 
smell to our rat and assume that it can estimate the distance from the cheese 
by noting the intensity of its aroma. Since all path lengths through the maze 
must be longer than the straight-line distance from rat to cheese, this will be 
an appropriate estimate to use in the branch-and-bound strategy, and will 
cause our rat to quickly abandon paths which are moving it away from the 
target. 

A second feature of every AI program is a control mechanism for guid
ing the chosen search strategy and, in some cases, selecting among available 
strategies. A common control method is the production system which consists 
of a series of IF-THEN statements which test for specified conditions and 
take action accordingly. 

Our rat uses a production system at each step, first to determine 
whether the target is at hand, and then to find a direction in which it can 
proceed without encountering a wall. IF the rat is by the target, THEN it eats 
the cheese. IF it finds an open space, THEN it moves into the space. IF it 
finds itself in a blind alley, THEN it turns around and goes back. 

The efficiency of the search may be strongly influenced by the order in 
which the productions are triggered. It is generally desirable to trigger 
productions first which have the potential for eliminating large portions of 
the search space as unfruitful, and then testing subtler questions. Triggering 
productions in a systematic order can in some cases lead to a result different 
from a random triggering. 

This last effect is easily demonstrated by our rat. If we program the rat 
to select from its options at each intersection in a random fashion, after a 

222 



Mazes 

sufficiently long series of runs through the maze, it will have examined every 
possible path. If, on the other hand, we have the rat look straight ahead first, 
then left, then right, say, at every intersection, it will still find its way to the 
target, but on repeated runs it will always find the same route, which mayor 
may not be the shortest one available. 

I Leaving a Trail 
In many AI programs, it is not only important to reach the goal, but also to 
leave an audit trail which documents the path taken. Such a trail is essential 
if the user wants to ask why the program reached the indicated conclusion. 

Our rat needs an audit trail for two reasons: During any given run, a 
trail is helpful to prevent repetitious exploration of blind alleys. And if sev
eral runs are made to find the shortest path, each path must be remembered 
for comparison with previous paths, and the shortest must be remembered 
so that the rat can find it again. 

Since keeping track of where it has been puts a significant strain on the 
rat's (and the VIC's) memory, we have explored several techniques to keep 
track of things. In one case, the depth-first search, we equip the rat with a 
mental map of the entire search space so that it can mark the points visited. 
This is a very adequate approach for avoiding duplication and remembering 
the path actually chosen, but it requires a secondary counting of steps to 
determine the length of the path. In other cases, the rat counts steps and 
remembers directions from the starting point, but it is not provided any 
information about its absolute position in the search space. 

All AI programs have an ability to learn, in a certain sense, but they 
vary widely in the extent to which they must be spoon-fed their new knowl
edge. In most cases, new knowledge is incorporated into the program by a 
human programmer who enlarges the information space, or improves the 
search strategy or the control. But some programs, particularly game pro
grams, are self-modifying; they avoid past mistakes the next time around. 

Our rat exhibits two kinds of learning ability and could be equipped 
with yet a third. First, it learns with human intervention when the program 
is changed. (We find the rat to be a slow learner when we do the program
ming!) Second, it learns from experience in any given maze and retains what 
was learned in this audit trail. It can find and remember the shortest route to 
the target. And it could surely learn to select an optimum search strategy if 
we were to write the appropriate program. 

I The Program 
Rats! requires at least 11K of RAM (SK or more memory expansion). The pro
gram is written in BASIC. It provides for storing mazes on tape or disk, but 
the use of external storage is not essential, since the user can construct 

223 



------- -----

I Mazes 

appropriate mazes as a part of running the program. Tape users should 
change OPEN1,8,2,"MAZE" in line 800 to OPEN1,1,0,"MAZE" and also 
change OPEN1,8,2,"MAZE,S,W" in line 900 to OPEN1,1,1,"MAZE". 

Integer variables are used extensively to minimize the demand on RAM. 
(An integer variable consumes two bytes of VIC memory; a real number, five 
bytes.) The size of the R% array is an important constraint on the mazes 
which can be explored by the program. If more than ten possible paths exist 
or if the shortest path is more than 100 steps long, the maze will not be 
accepted. 

I Using the Program 
The meaning and utility of various search strategies and auditing techniques 
can be explored by using the maze construction routines to fashion mazes 
having various desired characteristics, and then letting our rat run through 
those mazes using the various search routines. 

Many more configurations are possible. The branch-and-bound method 
with a remaining-distance estimate will be found to be especially powerful in 
mazes in which paths tend to lead in a consistent direction, but this tech
nique is less useful in mazes where early steps down the correct path appear 
to be in the wrong direction. The breadth-first routine will be impressive 
only in cases where a short path to the target coexists with much longer 
paths, none of which need be fully explored using this strategy. 

For a given search, we may set as a goal finding the target as quickly as 
possible on the first run or finding the shortest path to the target. In most 
cases, the depth-first strategy will be found quite effective at finding the tar
get quickly on the first run of the maze, but it is a characteristic of the mem
ory device used that the best route may never be found except after repeated 
searches from scratch. In depth-first searches, our rat will prefer its first 
successful route unless we wipe its memory clean and let it use the random
selection routine another time. 

The score sheet accessible at the end of each run makes it possible to 
compare the rat's performance in a given maze using a variety of search 
strategies, and before and after learning in each strategy. The record is 
cleared each time we return to the main menu, and such returns are nec
essary only to alter the maze. 

I References 
Alexander, T. "Teaching Computers the Art of Reason." Fortune (May 17, 

1982): 82. 

Barr, A., and E. A. Feigenbaum, eds. The Handbook of Artificial Intelligence. 
Los Altos, CA: William Kaufmann, 1981. 

224 



Mazes I 
Lindsay, R. K., B. G. Buchanan, E. A. Feigenbaum, and J. Lederberg. Applica

tions of Artificial Intelligence for Organic Chemistry: The Dendral Project. 
New York: McGraw-Hill, 1980. 

McCorduck, P. Machines Who Think. San Francisco: W. H. Freeman, 1972. 
Newell, A. Production Systems: Models of Control Structures in Visual Infor

mation Processing. Edited by W. G. Chase. New York: Academic Press, 
1972. 

Nilsson, N. J. Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980. 
Raphael, B. The Thinking Computer. San Francisco: W. H. Freeman, 1976. 
Shortliffe, E. H. Computer-Based Medical Consultations: MYCIN. New York: 

American Elsevier, 1976. 
Winograd, J. Understanding Natural Language. New York: Academic Press, 

1972. 
Winston, P. H. Artificial Intelligence. Reading, MA: Addison-Wesley, 1977. 

Rats! 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

30 DIMB%(506),T%(506),R%(100,10),D%(4),C%(4) :rem 102 
31 DEFFNA(X)=INT«X-l)/22)-INT«X2-1)/22):DEFFNB(X)=ABS(X-X2-

22*FNA(X»+ABS(FNA(X» :rem 253 
50 PRINT"{CLR}{5 SPACES}{RVS}RATS{2 SPACES}MENU{OFF}":PRINT:P 

RINT:PRINT"A{ 3 SPACES}CONSTRUCT MAZE" :PRINT:PRINT : rem 54 
53 PRINT"B{3 SPACES}GET MAZE FROM FILE":PRINT:PRINT"C 

{3 SPACES}MODIFY MAZE":PRINT:PRINT :rem 116 
57 PRINT"D{3 SPACES}RUN MAZE":PRINT:PRINT:PRINT"E{3 SPACES}FI 

LE MAZE" :PRINT:PRINT : rem 92 
60 PRINT"F{3 SPACES}END SESSION" :rem 120 
68 V=0:FORI<=lT010:S%(K)=0:NEXT :rem 67 
70 GETZ$:IFZ$=""THEN70 :rem 35 
71 IFZ$="A"THEN100 :rem 247 
72 IFZ$="B"THEN800 :rem 0 
73 IFZ$="C"THEN150 :rem 0 
74 IFZ$="D"THEN200 :rem 254 
75 IFZ$="E"THEN900 :rem 7 
77 IFZ$="F"THENEND :rem 72 
100 PRINT"{CLR}{3 SPACES}{RVS}MAZE CONSTRUCTION{OFF}":PRINT:P 

RINT"PRESS K TO OPEN SPACE":PRINT :rem 35 
102 PRINT"PRESS D TO CLOSE SPACE" :PRINT:PRINT" {3 SPACES }TO MO 

VE AND OPEN" :rem 107 
104 PRINT"{4 SPACES}ADJACENT SPACE":PRINT"{5 SPACES}PRESS:" 

:rem 222 
106 PRINT" {11 SPACES} I {2 SPACES }UP": PRINT: PRINT" {3 SPACES} LEF 

T{2 SPACES}J Z L{2 SPACES}RIGHT":PRINT :rem 8 

225 



Mazes 

108 PRINT"{5 SPACES}OOWN{2 SPACES}M":PRINT:PRINT:PRINT"PRESS 
{SPACE}l FOR START":PRINT :rem 130 

112 PRINT"PRESS 2 FOR TARGET I :PRINT:PRINT"{2 SPACES}{RVS}PRES 
S Z TO CONTINUE{OFF}" :rem 55 

120 GETZ$:IFZ$="ITHEN120 :rem 123 
148 FORK=lT0506:B%(K)=160:NEXT :rem 5 
150 FORK=lT0506:POKE37887+K,6:POKE4095+K,B%(K) : NEXT :rem 31 
151 PRINT"{HOME}{21 OOHN}":PRINT"PRESS Q TO RETURN"~ :rem 135 
152 FORV=lT010:S%(V)=0:NEXT:V=0 :rem 131 
154 X=243:B=32 :rem 230 
155 IFX<23THENX=X+22:GOT0157 :rem 222 
156 IFX>484THENX=X-22 :rem 14 
157 POKE4095+X,B:B%(X)=B :rem 88 
159 GETZ$:IFZ$="ITHEN159 :rem 147 
160 IFZ$="O"THENB=160 :rem 174 
165 IFZ$="K"THENB=32 :rem 136 
176 IFZ$=IL"THENX=X+l: B=32 : rem 14 
177 IFZ$="J"THENX=X-l :B=32 : rem 15 
178 IFZ$="M"THENX=X+22 :B=32 : rem 68 
179 IFZ$="I"THENX=X-22:B=32 :rem 67 
180 IFZ$="1"THENB=90:Xl=X :rem 199 
181 IFZ$="2"THENB=83:X2=X :rem 204 
183 IFZ$="C"THEN50 :rem 15 
184 GOT0155 :rem 113 
200 PRINT" {CLR} {5 SPACES} {RVS} SEARCH MENU": PRINT: PRINT: PRINT" 

A{ 3 SPACES }RANOOM" :PRINT: PRINT : rem 28 
202 PRINT" B{3 SPACES}BREAOTH FIRST":PRINT:PRINT:PRINT" C 

{3 SPACES}BRANCH AND BOUNO":PRINT:PRINT :rem 140 
204 PRINT" O{3 SPACES}B ANO B PLUS":PRINT:PRINT:PRINT" E 

{3 SPACES}OEPTH FIRST":PRINT:PRINT :rem 175 
206 PRINT" c{3 SPACES}MAIN MENU" :rem 20 
210 GETZ$:IFZ$="ITHEN210 :rem 123 
211 IFZ$="A"THENJ=l :GOT0250 : rem 84 
212 IFZ$="B"THENJ=2:GOT0300 :rem 83 
213 IFZ$="C"THENJ=3:GOT0350 :rem 91 
214 IFZ$="0"THENJ=4:GOT0400 :rem 90 
215 IFZ$="E"THENJ=5 :GOT0450 : rem 98 
216 IFZ$="Q"THEN50 :rem 12 
217 GOT0210 :rem 102 
250 WW=0:F=32 :rem 212 
251 GOSUB700:GOT0255 :rem 190 
253 GOSUB500 :rem 175 
255 IFL=0THEN260 :rem 171 
256 GOSUB731:T%(W)=T%(W-l)+D:GOT0290 :rem 76 
260 GOSUB510 :rem 174 
261 IFN=0THENGOSUB720:GOT0265 :rem 59 
262 P=INT(RNO(l)*N)+l :rem 157 
2630=D%(P):X=X+O :rem 188 
265 IFW=lTHENT%(1)=O:GOT0267 :rem 174 
266 T%(W)=T%(W-l)+O :rem 234 
267 IFW<3THEN280 :rem 189 

226 



Mazes 

268 FORK=lTOW-1 :rem 152 
269 IFT%(K)=T%(W)THEN273 :rem 110 
271 NEXT :rem 217 
272 GOT0280 :rem 110 
273 W=K :rem 123 
280 GOSUB730:GOT0253 :rem 193 
290 I FWW=0THENWW=W :rem 182 
292 I FW>WWTHENGOT0550 :rem 113 
293 WW=W:T=l :rem 220 
294 FORK=lTOWW :rem 144 
295 R%(K-100*(P-1),P)=T%(K) :rem 104 
296 IFK-100*(P-1)=100THENP=P+1 :rem 152 
297 NEXT :rem 225 
298 WP=P :rem 215 
299 GOT0550 :rem 119 
300 F=46:WW=0:GG=1 :rem 11 
301 GOSUB700 :rem 171 
303 WW=WW+1:IFWW<101THEN305 :rem 151 
304 GOSUB982:GOT0317 :rem 200 
305 FORG=lTOGG :rem 101 
307 IFE%(G)=lTHEN340 :rem 95 
310 GOSUB740:GOSUB500 :rem 254 
316 IFL=0THEN320 :rem 166 
317 R%(WW,G)=D:GOSUB731:GS=G:GOT0550 : rem 191 
320 GOSUB510 :rem 171 
321 IFN=0THENE%(G)=1:GOSUB720:GOSUB750:GOT0340 :rem 50 
323 R%(WW,G)=D%(l) :rem 169 
324 IFN=1THEN335 :rem 174 
325 IF(GG+N-1) <11THEN327 :rem 72 
326 G=10:GOSUB980:GOT0317 : rem 233 
327 FORK=2TON :rem 46 
328 FORW=1TOWW-l:R%(W,GG+K-1)=R%(W,G):NEXT :rem 39 
329 R%(WW,GG+K-1)=D%(K) :rem 228 
330 NEXT :rem 213 
331 GG=GG+N-1 :rem 199 
335 GOSUB750 :rem 183 
340 NEXTG :rem 29 
345 GOT0303 :rem 107 
350 F=46:GG=1:GS=1 :rem 253 
352 GOSUB700 :rem 177 
354 WW=500 :rem 28 
356 FORG=lTOGG :rem 107 
358 IFE%(G)=lTHEN362 :rem 105 
360 IFW%(G) <WWTHENGS=G:WW=W%(G) :rem 172 
362 NEXT :rem 218 
364 G=GS:GOSUB740:X=X+R%(WW,GS):GOSUB731 :rem 243 
366 WW=WW+1:IFWW<101THEN368 :rem 169 
367 GOSUB982:GOT0372 :rem 210 
368 W%(GS)=WW:GOSUB500 :rem 66 
370 IFL=0THEN374 :rem 175 
372 GOSUB731:R%(WW,GS)=D:GOT0550 :rem 187 

227 



Mazes 

374 GOSUB510 :rem 180 

376 IFN=0THENE%(GS)=I:GOSUB720:GOSUB750:GOT0354 :rem 148 

380 R%(WW,GS)=D%(I) :rem 255 

382 IFN=ITHENX=X+D%(I):GOSUB731:GOT0366 :rem 129 

384 FORK=2TON :rem 49 

385 GG=GG+l:IFGG<IITHEN387 :rem 27 

386 GOSUB980:GOT0372 :rem 209 

387 W%(GG)=W%(GS) :rem 161 

388 FORW=ITOWW-l:R%(W,GG)=R%(W,GS) :NEXT :rem 172 

390 R% (WW , GG ) = D% ( K) :rem 14 

392 NEXT :rem 221 

396 GOSUB720:GOSUB750:GOT0354 :rem 32 

400 F=46:GG=I:GS=I:WW=0:T%(I)=Xl :rem 73 

402 GOSUB700 :rem 173 

404 W=500 :rem 22 
:rem 103 406 FORG=ITOGG 

408 IFW%(G)+FNB(T%(G»+E%(G)*500<VVTHENGS=G:W=W%(G)+FNB(T%(G 
:rem 93 ) ) 

410 NEXT :rem 212 

412 WW=W%(GS) :rem 233 

414 G=GS:GOSUB740 :X=X+R% (HW, GS) :GOSUB731 :rem 239 

416 WW=WW+l:IFWW<101THEN418 :rem 161 

417 GOSUB982:GOT0422 :rem 202 

418 W%(GS)=WW:GOSUB500 :rem 62 
420 IFL=0THEN424 :rem 167 

422 GOSUB731:R%(WW,GS)=D:GOT0550 :rem 183 
424 GOSUB510 :rem 176 
426 IFN=0THENE%(GS)=I:GOSUB720:GOSUB750:GOT0404 :rem 140 
428 R%(WW,GS)=D%(I):T%(GS)=X :rem 53 
430 IFN=ITHENX=X+D%(I):GOSUB731:GOT0416 :rem 119 
432 FORK=2TON :rem 43 
433 GG=GG+l:IFGG<IITHEN435 :rem 15 
434 GOSUB980:GOT0422 :rem 199 
435 W%(GG)=W%(GS):T%(GG)=T%(GS) :rem 206 
436 FORW=ITOWW-l:R%(W,GG)=R%(W,GS):NEXT :rem 166 
438 R% (WW, GG )=D% (K) : rem 17 
440 NEXT :rem 215 
442 GOSUB720:GOSUB750 :rem 9 
444 GOT0404 :rem 109 
450 F=32:FORK=IT0506:T%(K)=6:NEXT :rem 212 
452 GOSUB700 :rem 178 
454 GOSUB500:IFL=0THEN460 :rem 253 
458 GOSUB731:GOT0550 :rem 201 
460 N=0:GOSUB520:IFN=0THEN466 :rem 249 
462 P=INT(RND(I)*N)+1 :rem 159 
464 X=X+D%(P):POKE37887+X,C%(P):T%(X)=C%(P):GOSUB731:GOT0454 

466 GOSUB530:IFN=0THEN472 
468 P=INT(RND(I)*N)+1 
470 X=X+D%(P):GOSUB731:GOT0454 
472 GOSUB540:IFN=0THEN476 

228 

:rem 249 
:rem 8 

:rem 165 
:rem 34 
:rem 10 



Mazes I 
474 POKE37887+X,7:T%(X)=7:X=X+D:GOSUB731:GOT0454 :rem 144 
476 GOSUB720:GOSUB731:GOT0454 :rem 31 
500 IFB%(X+l)=83THENX=X+l:D=1:L=1:RETURN :rem 170 
501 IFB%(X+22)=83THENX=X+22:D=22:L=1:RETURN :rem 68 
502 IFB%(X-22)=83THENX=X-22:D=-22:L=1:RETURN :rem 118 
503 IFB%(X-l)=83THENX=X-l:D=-1:L=1:RETURN :rem 222 
505 RETURN :rem 122 
510 N=0 :rem 81 
512 IFB%(X+1)=32THENN=N+l:D%(N)=1 :rem 73 
513 IFB%(X-22)=32THENN=N+l:D%(N)=-22 :rem 223 
514 IFB%(X+22)=32THENN=N+l:D%(N)=22 :rem 177 
515 IFB%(X-l)=32THENN=N+l:D%(N)=-1 :rem 123 
519 RETURN :rem 127 
520 IFB%(X+l)=32ANDT%(X+l)=6THENN=N+l:D%(N)=1:C%(N)=0:rem 186 
522 IFB%(X-22)=32ANDT%(X-22)=6THENN=N+l:D%(N)=-22:C%(N)=2 

:rem 136 
524 IFB%(X+22)=32ANDT%(X+22)=6THENN=N+l:D%(N)=22:C%(N)=3 

: rem 90 
526 IFB%(X-l)=32ANDT%(X-l)=6THENN=N+l:D%(N)=-1:C%(N)=4 

:rem 245 
528 RETURN :rem 127 
530 IFT%(X+l)=0THENN=N+l:D%(N)=1 : rem 38 
532 IFT%(X-22)=2THENN=N+l:D%(N)=-22 :rem 191 
534 IFT%(X+22)=3THENN=N+l:D%(N)=22 :rem 147 
536 IFT%(X-l)=4THENN=N+l:D%(N)=-1 : rem 95 
538 RETURN :rem 128 
540 IFB%(X+l)=32ANDT%(X+l)<5THEND=1:N=1 :rem 207 
542 IFB%(X-22)=32ANDT%(X-22) <5THEND=-22:N=1 :rem 155 
544 IFB%(X+22)=32ANDT%(X+22)<5THEND=22:N=1 :rem 108 
546 IFB%(X-l)=32ANDT%(X-l)<5THEND=-1:N=1 :rem 6 
548 RETURN :rem 129 
550 FORK=lT07:POKE38384+K,6:NEXT :rem 216 
551 POKE4593,16:POKE4594,18:POKE4595,5:POKE4596,19:POKE4597,1 

9:POKE4598,32:POKE4599,26 :rem 2 
552 L=0:GETZ$:IFZ$=""THEN552 :rem 128 
555 POKE4095+U,F:POKE4095+Z,F:POKE4095+Y,F:POKE4095+X,F 

:rem 37 
556 POKE4095+Xl,90:POKE4095+X2,83 :rem 113 
557 B%(U)=F:B%(Z)=F:B%(Y)=F:B%(X)=F:B%(Xl)=90:B%(X2)=83 

:rem 224 
560 PRINT"{CLR}": :rem 58 
561 ONJGOT0562,563,564,565,566 :rem 135 
562 PRINT"{4 SPACES}{RVS}RANDOM SEARCH{OFF}":GOT0567 : rem 158 
563 PRINT" {4 SPACES} {RVS}BREADTH FIRST{OFF}" :GOT0567 :rem 170 
564 PRINT" {3 SPACES} {RVS}BRANCH AND BOUND{OFF}":GOT0567 

:rem 34 
565 PRINT" {3 SPACES} {RVS}BRANCH AND BOUND{OFF}":PRINT" 

{4 SPACES}{RVS}PLUS ESTlMATE{OFF}":GOT0567 :rem 114 
566 PRINT" {5 SPACES} {RVS}DEPTH FIRST{OFF}" :rem 19 
567 PRINT: PRINT : rem 246 

229 



Mazes 

571 PRINT"A{ 3 SPACES} RERUN - NO MEMORY" :PRINT: PRINT "B 
{3 SPACES}RERUN WITH MEMORY":PRINT :rem 90 

573 PRINT"C{ 3 SPACES} CHECK SCORES" :PRINT: PRINT "D{ 3 SPACES} GO 
{SPACE}TO SEARCH MENU":PRINT :rem 225 

574 IFJ=5THENPRINT"E{ 3 SPACES}COLOR MEMORY" :PRINT : rem 79 
575 PRINT"Q{3 SPACES}GO TO MAIN MENU" :rem 86 
586 GETZ$:IFZ$=""THEN586 :rem 155 
587 IFZ$="C"THENGOSUB950:GOT0560 :rem 208 
589 ONJGOT0600,620,640,660,680 :rem 120 
600 IFZ$="B"THEN610 :rem 44 
601 FORP=lT010:FORK=lT0100:R%(K,P)=0:NEXT:NEXT :rem 118 
602 FORK=lT0506:T%(K)=0:NEXT :rem 171 
603 IFZ$="A"THEN251 :rem 47 
604 IFZ$="D"THEN200 :rem 45 
605 IFZ$="Q"THEN50 :rem 14 
609 GOT0560 :rem 115 
610 GOSUB700 :rem 174 
612 FORP=lT010 :rem 66 
613 FORK=lT0100 :rem 110 
614 GOSUB731 :rem 182 
615 X=X1+R%(K,P) :rem 116 
616 IFK+100*(P-1)=\VWTHENGOT0619 :rem 79 
617 NEXT :rem 221 
618 NEXT :rem 222 
619 GOSUB731:S%(V)=S%(V)-1:GOT0551 :rem 220 
620 IFZ$="B"THEN627 :rem 54 
621 GOSUB760 :rem 182 
622 FORK=lTOGG:E%(K)=0:FORW=lTO\M:R%(W,K)=0:NEXT:NEXT:rem 126 
623 IFZ$="A"THEN300 :rem 44 
624 IFZ$="D"THEN200 :rem 47 
625 IFZ$="Q"THEN50 :rem 16 
626 GOT0560 :rem 114 
627 GOSUB700 :rem 182 
628 G=GS:GOSUB740:X=X+R%(WW,G):GOSUB731:GOT0551 :rem 177 
640 IFZ$="B"THEN654 :rem 56 
642 GOSUB760 :rem 185 
644 FORG=lTOGG:FORW=lTOW%(G) :R%(W,G)=0:NEXT:E%(G)=0:vv%(G)=0:N 

EXT :rem 151 
646 IFZ$="A"THEN350 :rem 54 
648 IFZ$="D"THEN200 :rem 53 
650 IFZ$="Q"THEN50 :rem 14 
652 GOT0560 :rem 113 
654 GOSUB700 :rem 182 
656 G=GS:GOSUB740:X=X+R%(WW,G):GOSUB731:GOT0551 :rem 178 
660 IFZ$="B"THEN674 :rem 60 
662 GOSUB760 :rem 187 
664 FORG=lTOGG:FORW=lTOW%(G):R%(vl,G)=0:NEXT:E%(G)=0:W%(G)=0:T 

%(G)=0:NEXT :rem 81 
666 IFZ$="A"THEN400 :rem 52 
668 IFZ$="D"THEN200 :rem 55 
670 IFZ$="Q"THEN50 :rem 16 

230 



Mazes I 
672 GOT0560 :rem 115 
674 GOSUB700 :rem 184 
676 G=GS:GOSUB740:X=X+R%(WW,G):GOSUB731:GOT0551 :rem 180 
680 IFZ$="B"THENFORK=IT0506:POKE4095+K,B%(K):POKE37887+K,T%(K 

):NEXT:GOSUB702:GOT0454 :rem 104 
682 IFZ$="E"THEN695 :re.m 70 
684 FORX=IT0506:POKE37887+X,6:T%(X)=6:NEXT :rem 52 
686 IFZ$="A"THEN450 :rem 59 
688 IFZ$="D"THEN200 :rem 57 
690 IFZ$="Q"THEN50 :rem 18 
692 GOT0560 :rem 117 
695 FORK=lT0506:IFB%(K)=32ANDT%(K)=6THENPOKE4095+K,32:POKE378 

87+K,6:GOT0697 :rem 237 
696 POKE4095+K,160:POKE37887+K,T%(K):POKE4095+Xl,90:POKE4095+ 

X2,83 :rem 27 
697 NEXT:GOT0550 :rem 242 
700 FORK=IT0506:POKE4095+K,B%(K):POKE37887+K,6:NEXT :rem 32 
702 X=Xl:U=X:Y=X:Z=X :rem 44 
705IFV=10THENFORN=lT09:S%(N)=S%(N+l):NEXT:GOT0709 :rem 90 
707 V=V+l :rem 227 
709 W=1:S%(V)=0:RETURN :rem 69 
720 POKE4095+U,F:B%(U)=F:POKE4095+X,M:B%(X)=M :rem 97 
725 D=Y-X:U=Z:Z=X:X=Y:RETURN :rem 142 
730 W=W+l :rem 225 
731 S%(V)=S%(V)+l :rem 114 
732 M=67:IFABS(Y-Z)=22THENM=93 :rem 41 
737 POKE4095+U,F:POKE4095+Z,M:B%(U)=F:B%(Z)=M :rem 109 
738 POKE4095+Y,81:POKE4095+X,90:B%(Y)=81:B%(X)=90:U=Z:Z=Y:Y=X 

: RETURN :rem 130 
740 X=Xl:Y=X:Z=X:U=X:IFWW=lTHENRETURN :rem 34 
741 FORK=lTOWW-l:X=X+R%(K,G):GOSUB731:NEXT :rem 145 
742 RETURN :rem 125 
750 FORK=WW-ITOlSTEP-l:X=X-R%(K,G):GOSUB731:NEXT :rem 45 
751 POKE4095+U,F:POKE4095+Z,F:B%(U)=F:B%(Z)=F:RETURN :rem 117 
760 FORK=23T0483 :rem 179 
762 IFB%(K)=46THENB%(K)=32 :rem 172 
763 NEXT :rem 223 
765 RETURN :rem 130 
800 PRINT" {CLR}GET MAZE FROM FILE": PRINT :OPENl, 8,2, "MAZE" 

:rem 32 
810 FORK=IT0506 :rem 119 
811 INPUT#I,B%(K) :rem 173 
812 IFB%(K)=90THENXl=K :rem 19 
813 IFB%(K)=83THENX2=K :rem 23 
814 NEXT :rem 220 
815 CLOSEl:GOT050 :rem 29 
900 PRINT"{CLR}FILE MAZE":PRINT:OPENl,8,2, "MAZE,S,W" :rem 15 
911 FORX=IT0506:PRINT#I,B%(X):NEXT :rem 86 
915 PRINT#1:CLOSEl:GOT050 :rem 57 
950 PRINT" {CLR} {3 SPACES} {RVS } LATEST RAT SCORES{ OFF}": PRINT: P 

RINT"TRIAL", "SCORE" :PRINT : rem 42 

231 



Mazes 

955 FORK=lT010 :rem 71 
956 IFS%(K)=0THEN960 :rem 130 
957 PRINTK,S%(K) :rem 189 
958 NEXT :rem 229 
960 PRINT:PRINT:PRINT" PRESS Z TO CONTINUE" :rem 237 
965 GETZ$:IFZ$=""THEN965 :rem 157 
970 RETURN :rem 128 
980 GG= 10 : PRINT" TOO MANY BRANCHES":RETURN : rem 95 
982 WW=100:PRINT"PATH TOO LONG": RETURN :rem 147 
999 END :rem 130 

232 



Chapter 
Eight 

Shoot-ern-ups 

J 





-----------

pauli 
Austin Space Corridor 

Get ready for the ultimate video experience. "Space Corridor" is not just a 
game, but an adventure where your skills as a pilot are tested to their fullest. 
All you need is an unexpanded VIC and a joystick to test your skills. 

To manipulate your ship, move joystick left and right. The fire button 
activates the laser. Be wary of enemy bombs and ships. Watch your fuel 
consumption (monitored by the gauge near the top of screen). After you 
shoot five of the enemy's ships, your fuel is restored and you set up base, 
but your base is constantly blasted by other enemy ships. 

I Typing It In 
When typing in this program, be sure to save a copy before you run it since 
an error in one of the DATA statements could cause the program to crash. 
Program 2 disables the RUN/STOP key. 

If you are using a disk, be sure to save Program 2 with the filename 
SPACE.PRG. Tape users should save Program 2 on the same tape immedi
ately after Program 1. Tape users should also delete lines 63995 and 63997 
of Program 1 and replace line 63999 with 
63999 POKE198,1:POKE631,131 

Good luck and happy laser blasting! 

Program 1. Space Corridor 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

15 POKE56,27:POKE55,240:POKE51,240:POKE52,240:CLR :rem 104 
20 FORT=7416T07583:READC:POKET,C:NEXT:FORT=7152T07413:READC:P 

OKET,C:NEXT :rem 149 
999 DATA231,231,231,231,231,231,231,231 :rem 169 
1000 DATA0,0,0,0,0,0,0,0,231,231,231,195,219,24,66,126:rem 87 
1010 DATA57,57,57,57,131,199,239,239,255,221,221,221,235,247, 

247,255 :rem 95 
1020 DATA255,219,219,219,231,231,255,255,255,255,235,235,247, 

247,247,247 :rem 37 
1030 DATA255,255,255,235,247,255,255,255,255,255,255,247,255, 

255,255,255 :rem 50 
1050 DATA255,255,255,255,255,255,255,255 :rem 244 
1060 DATA0,2,10,11,47,47,43,42,170,186,190,234,254,255,255,25 

5 :rem 22 
1070 DATA0,128,160,160,168,168,168,168,170,170,170,170,170,17 

0,170,170 :rem 171 
1080 DATA255,255,254,238,234,250,186,190,170,170,170,170,170, 

170,170,170 :rem 16 
1085 DATA42,42,42,42,10,10,2,0,190,255,255,190,190,186,186,18 

6 :rem 27 

235 



Shoot-em-ups 

1086 DATA168,168,168,168,160,160,128,0,126,189,219,255,255,21 
9,189,126 :rem 216 

1087 DATA231,231,231,231,231,231,231,231 :rem 206 
1090 REMINTERRUPT DATA :rem 149 
1110 DATA172,60,3,192,255,240,39,169,127,141,34,145,169,40,15 

3,100,31,173,17 :rem 200 
1120 DATA145,41,16,208,1,136,173,32,145,41,128,208,1,200,169, 

33,153,100,31 :rem 76 
1130 DATA140,60,3,169,255,141,34,145,76,191,234 :rem 57 
1140 REM ***ML DATA*** :rem 89 
1150 DATA169,151,133,253,169,206,133,252,162,0,169,151,133,25 

5,169,228 :rem 180 
1160 DATA133,254,162,0,160,0,177,252,145,254,200,192,22,208,2 

47,56 :rem 217 
1165 DATA165,254,233,22,133,254,165,252,233,22,133,252,232,22 

4,10,208,227 :rem 50 
1170 DATA173,61,3,160,0,153,8,151,200,192,22,208,248:REM SHIP 

ML :rem 12 
1175 DATA169,31,133,255,169,0,133,254,160,0,177,254,201,50,20 

8,10,165,2,201,31,208,2 :rem 66 
1176 DATA169,40,145,254,201,51,208,4,169,40,145,254,201,31,20 

8,33,169,40,145,254 :rem 150 
1177 DATA192,230,176,25,152,24,105,22,168,177,254,201,33,208, 

5,169,1,133,O :rem 105 
1178 DATA96,169,31,145,254,152,56,233,22,168,136,208,192,169, 

0,141,11,144 :rem 78 
1180 DATA169,3,133,1,173,17,145,41,32,208,55,169,1,205,62,3,2 

40,47,169 :rem 166 
1190 DATA1,141,62,3,174,60,3,138,56,233,22,170,188,100,31,192 

,40,240,13 :rem 191 
1200 DATA132,2,169,50,157,100,31,169,255,141,11,144,96,169,51 

,157,100,31,198,1 :rem 39 
1210 DATA208,222,169,200,141,11,144,96,169,0,141,62,3,96 

:rem 236 
63995 POKE 36879,15 :rem 226 
63997 PRINT .. {CLR }{YEL} PLEASE WAIT .... {BLK} ": PRINT "{ 2 Dmm} L 

OAD"r CHR$(34)r"SPACE.PRG"rCHR$(34)r",8" :rem 101 
63999 PRINT "{5 Dmm}RUN":PRINT"{HOME}":POKE198,2:POKE631,13: 

POKE 632,13 :rem 221 

Program 2. Space.prg 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 POKE809, 242 :PRINTCHR$ ( 144) CHR$ ( 147) SPC ( 3) "SPACE 
:GOSUB2000 

30 FORT=7584T07679:POKET,255:NEXT:POKE.,. 

CORRIDOR I " 
:rem 176 

:rem 34 
40 POKE37159,255:PRINTCHR$(18)" HIT ANY KEY TO BEGIN "; 

50 WAIT197,255,64:POKE828,94:PRINTCHR$(147) 
55 C=2:FORT=7922T08185STEP22 

236 

:rem 35 
:rem 242 
:rem 187 



Shoot-ern-ups I 
57 FORJ=lTOC:POKET+(11-J/2),40:POKET+ll+J/2,40:NEXT:C=C+2:NEX 

T :rem 240 
60 PRINTCHR$(17)CHR$(17)CHR$(17)CHR$(17)CHR$(17)CHR$(17)CHR$( 

17 ) " {2 DOWN}" : rem III 
65 POKE36867,46:POKE36878,143:POKE36879,8:POKE36869,255 

:rem 154 
70 PRINTCHR$ (5) 7 :FORT=l T010 :PRINTSPC (10-T) CHR$ ( 18)" gD~" 7 SPC (2 

*T)7"gF~":NEXT :rem 253 
80 PRINTCHR$ ( 18) CHR$( 28) CHR$ (19) CHR$ ( 17) "FUEL:{ OFF} 456789: 7 <= 

>?":POKE646,11 :rem 103 
85 PRINTCHR$(17):POKE37166,64:POKE788,240:POKE789,27:POKE3716 

6,192 :rem 106 
90 PRINTCHR$( 17) SPC( 14)" )*+" :PRINTSPC( 14)" ,-." :PRINTSPC( 14) "I 

01" :rem 115 
100 NK=.:SC=.:FL=7588:A=256:V=36874:Ll=8120:L2=8141 :rem 101 
105 Y=7932:CH=40:GOSUB470 :rem 188 
106 IFPEEK(Y)=50THENSYS7201:SC=SC+10:POKEY,40:NK=NK+l:POKE368 

75,220:GOT0105 :rem 84 
107 IFNK=5THENGOSUB3000:SC=SC+50 :rem 215 
110 POKEY,40::Y=Y+INT(RND(1)*3)+21:CH=CH-.5:IFPEEK(Y)=255THEN 

Y=Y+23 : rem 1 
112 IFPEEK(Y)=33THENPOKE828,255:POKEY,50:AN=250:GOSUB1500:ER= 

2:GOT01540 :rem 74 
113 IFPEEK(L2)=33THENPOKE828,255:POKELl,50:AN=250:GOSUB1500:E 

R=2:GOT01540 :rem 148 
114 IFPEEK(Ll)=33THENPOKE828,255:POKELl,50:AN=250:GOSUB1500:E 

R=2:GOT01540 :rem 148 
120 POKEY,INT(CH) :rem 14 
121 IFCH=38THENPOKEY+22,31 :rem 44 
129 POKE829,INT(RND(1)*7)+1 :rem 249 
130 IFCT=2THENA=A/2:POKEFL,PEEK(FL)-A:POKEFL-l,PEEK(FL-l)-A:C 

T=l :rem 173 
131 IFA=lTHENFL=FL+8:A=256:IFFL>7680THENAN=.:GOSUB1500:ER=1:G 

OT01540 :rem 174 
132 CT=CT+1:SYS7201 :rem 96 
133 IFPEEK(.)=lTHENA=PEEK(828):POKE828,255:POKE8036+A,50:AN=1 

00:GOSUB1500:ER=2:GOT01540 :rem 155 
140 POKEV,300+NOT(3*CH) :rem 46 
150 IFY>8200THEN105 :rem 75 
160 GOT0106 :rem 103 
470 PRINTCHR$( 19)CHR$( 18)CHR$( 30) "SCORE": SC, "HIGH" :HI : RETURN 

:rem 91 
900 DATA231,231,231,195,219,24,66,126 :rem 79 
1500 REM SOUND ROUTINE :rem 89 
1510 POKE36876,200:POKE36877,200 :rem 248 
1520 FORT=15T00STEP-l :rem 19 
1530 POKE36878,T+128:FORTJ=TTOAN:NEXT:NEXT:POKE36876,.:POKE36 

877,. :rem 101 
1535 RETURN :rem 174 
1540 REM CRASH :rem 31 

237 



Shoot-em-ups 

1550 PRINTCHR$(5)CHR$(l47)CHR$(18)~ :IFER=lTHENPRINT" YOU ARE 
{SPACE lOUT OF FUEL" : rem 31 

1551 IFER=2THENPRINT" {2 SPACES }YOU HAVE CRASHED" : rem 124 
1552 PRINTCHR$(17)CHR$(18)" YOUR FORCE HAS BEEN{7 SPACES}DEST 

ROYED"CHR$(l7) :rem 52 
1553 POKE36867,34 :rem 158 
1560 PRINTCHR$(18)CHR$(17)"YOU WILL HAVE TO START"~ :rem 215 
1570 PRINTSPC(8)"AGAIN."CHR$(17)CHR$(17) :rem 15 
1580 POKE37166,197:IFSC>HITHENHI=SC :rem 146 
1590 FORT=7432T07439:READC:POKET,C:NEXT:RESTORE :rem 45 
1600 GOT030 :rem 99 
2000 POKE808, 199: POKE36869 , 242 : P RI NTCHR$ ( 17 ) CHR$ ( 8)" YOU ARE 

{SPACE } EXPLORING THE" ~ : rem 21 
2010 PRINT "PLANET 'FREON' LOOKING" ~ : rem 238 
2020 PRINT"FOR LIFE ON THIS" :rem 113 
2030 PRINT "PLANET. " :rem 136 
2040 PRI NT" ON THE PLANET YOU " : rem 86 
2050 PRINT "FIND A NATION OF" : rem 88 
2060 PRINT"DRUIDS WHO HOPE TO USE"~ :rem 73 
2070 PRINT"THEIR 'SLOW BOMBS' AND" ~ :rem 42 
2080 PRINT"THEIR SPACECRAFT ON A" :rem 209 
2090 PRINT"RECKLESS RUN TO WIPE" :rem 197 
2100 PRINT "OUT YOUR SHIP BEFORE" : rem 194 
2110 PRINT"YOU CONQUER THEIR " : rem 43 
2120 PRINT "PLANET. " :rem 136 
2130 PRINT "YOUR{ SHIFT-SPACE }MISSION:TO TAKE" : rem 170 
2140 PRINT "OVER THE PLANET BY" - : rem 20 
2150 PRINT"DESTROYING THEIR AIR" :rem 249 
2160 PRINT "FORCE OF 5 SHIPS" : rem 90 
2170 PRINT"BEFORE THEY HIT YOU OR"~ :rem 70 
2180 PRINT"YOU RUN OUT OF FUEL." :rem 117 
2190 POKE36879,25:RETURN :rem 185 
3000 NK=.: P RINTCHR$ ( 18) CHR$ ( 19) " {3 SPACES} YOUR FORCE HAS 

{2 SPACES}" :rem 227 
3010 PRINTCHR$(18)"DEFEATED THE AIR FORCE"~ :rem 233 
3020 PRINT" YOUR BASE IS NOW SET" :rem 124 
3030 PRINTCHR$(18)"UP. YOU MUST NOW FIGHT"~ :rem 12 
3040 PRINT"GORKS FROM{2 SPACES} 'PLANET Z''':POKE37166,64 

:rem 196 
3050 FORT=lT025:POKE36876,230:FORJ=lT040:NEXT:POKE36876, .:FOR 

J=lT040 :rem 189 
3060 NEXT: NEXT: P RINTCHR$ ( 19) ~ : FORT=l T05 : PRINT" {22 SPACES}" ~ 

:rem 64 
3070 NEXT:FORT=7432T07439:POKET, .:NEXT:FL=7588:A=256 :rem 207 
3080 FORT=7584T07679:POKET,255:NEXT:GOSUB470:RETURN :rem 8 

238 



Fe~~~ I Base Defense 
"Base Defense" is an entertaining game for the unexpanded VIC with a 
joystick. 

It's an easy game to play. The object is quite simply to destroy as many 
meteors as you can with five bases. The closer the meteors get, the more 
points they're worth because of the greater risk. Point distribution is as fol
lows: 50 points for close range, 25 for midscreen, and 10 for faraway shots. 

It's that simple, and it even leaves 2K for you to add your own extras. 

Base Defense 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 PRINT"[CLR}":POKE36879,14:POKE37139,0 
15 GOSUB2500:GOSUB2000 
17 PRINT"[CLR}[22 DOHN}" 
20 R=7690:V=36878:S1=36877:S2=36876:G=5:DD=37154 
30 FORT=lT03 
40 GOSUB200 
50 P=INT(RND(1)*22) 
60 POKE8142+P,1 
65 POKE38862+P,INT(RND(1)*7)+1 
70 NEXT T 
72 IFPEEK(R+22)=lTHENGOSUB1000 
75 PRINT" {DOWN}" :GOSUB80 :GOT030 
80 POKE R,0:RETURN 
200 P=PEEK(37137) 
205 IF(P AND 32)=0THENGOT0400 
210 IF(P AND 16)=0THEN DR=-1:GOT0250 
215 POKEDD,127 
220 M=PEEK(37152) 
225 IF(M AND 128)=0 THEN DR=1:POKEDD,255:GOT0250 
230 DR=0:POKEDD,255 
250 POKE R,32 
255 R=R+DR 
260 IF R<=7680THENR=7680 
265 IF R>=7701THENR=7701 
270 POKE R,0 
275 RETURN 
400 POKEV,15:FOR C=lT020 
405 POKER+22*C,46 
410 POKE S2,230-C 

:rem 156 
:rem 41 
:rem 66 

: rem 174 
:rem 226 
:rem 118 

:rem 34 
:rem 60 

:rem 171 
:rem 250 

:rem 45 
:rem 70 
: rem 95 

:rem 154 
: rem 1'')4 
:rem 212 

:rem 21 
:rem 150 
: rem 151 
:rem 81 

:rem 169 
:rem 62 
:rem 90 
:rem 85 

:rem 118 
:rem 126 
:rem 130 
:rem 172 
:rem 122 

415 IF PEEK((R+22*C)+22)=1 THEN POKE 
C=SC+AD:GOT0450 

420 POKE R+22*C,32 

(R+22*C)+22,2:GOSUB500:S 
:rem 211 
:rem 164 

425 POKE S2,0:NEXT C 
450 FORW=lT025:NEXTW:POKE(R+22*C)+22,32 
455 POKE R+22*C,32 
460 RETURN 

:rem 103 
:rem 71 

: rem 172 
:rem 122 

239 



I Shoot ~em~ups 
500 POKEV,15:POKESl,215:POKES2,200 :rem 9 
510 IFC<5THENAD=50 :rem 47 
515 IFC>=5ANDC<=15THENAD=25 :rem 106 
517 IFC>15THENAD=10 :rem 101 
520 POKEV,0:POKESl,0:POKES2,0 :rem 11 
530 RETURN : rem 120 
1000 POKEV,15:POKESl,215:POKES2,150 :rem 57 
1002 POKE 36879,239 :rem 205 
1005 FOR X=l TO 5 :rem 75 
1006 POKE R+X,62:POKE R-X,60 :rem 49 
1007 NEXT X : rem 95 
1010 FORE=15T00STEP-l :rem 254 
1012 POKEV,E :rem 186 
1014 FORW=lT0100:NEXTW :rem 118 
1016 NEXTE : rem 76 
1020 POKEV,0:POKESl,0:POKES2,0 :rem 55 
1030 G=G-l:IFG=0THEN GOTO 1500 :rem 152 
1035 POKE 36879,14 :rem 154 
1040 RETURN : rem 165 
1500 PRINT"{CLR}":POKE36879,27:POKE37154,255:POKE36869,240 

1510 
1520 
1530 
1540 
1550 
2000 
2005 
2010 
2020 

2030 
2040 
2050 
2500 
2521 
2522 

:rem 169 
PRINT" { BLU} YOUR SCORE WAS ": SC : rem 62 
INPUT"ViANT TO PLAY AGAIN":A$ :rem 175 
IF LEFT$(A$,I)="N" THEN END :rem 143 
PRINT" {CLR}" : rem 46 
SC=0:CLR:POKE36869,255:POKE36879,14:GOT017 :rem 16 
PRINT"{RVS}GENERATING GRAPHICS" :rem 218 
FORQ=7168T07679:POKEQ,PEEK(Q+25600):NEXTQ :rem 49 
FOR X=7168 TO 7191:READ A:POKE X,A:NEXT X :rem 32 
DATA 66,66,66,102,102,126,60,24,60,34,123,141,129,81,34, 
28 : rem 16 
DATA 36,157,66,36,24,129,36,66,0,0,0 :rem 217 
POKE 36869,255 :rem 205 
RETURN :rem 167 
PRINT:PRINTTAB(5):" {WHT}BASE DEFENSE" :rem 17 
FORX=0T021:POKE7680+X,42:POKE8164+X,42:NEXTX :rem 241 
FORX=0T022:POKE7680+22*X,42:POKE7701+22*X,42:NEXT X 

:rem 11 
2530 FORW=1T02000:NEXTW 
2540 PRINT" {CLR}": RETURN 

:rem 171 
:rem 73 

240 



c~:~ I Bomber Squadron 
"Bomber Squadron" is a game in two parts for the unexpanded VIC and a 
joystick. It's easy to play. All the instructions appear on the screen. 

On this fateful night you will receive your first wartime mission. When 
the papers finally arrive, you feel a sharp pain in the pit of your stomach. 
You have been selected for the Bomber Squadron. 

Suddenly, you find yourself deep over enemy lines. All you can hear is 
the dull roar of the plane's engines as you gaze into the radar. Then you see 
them, the enemy installations with a little more than you bargained for
jamming devices. Of course, since you are such a shrewd, level-headed per
son, you view these as only minor obstacles. You make a mental note to 
avoid them while positioning your sights, for your sights are at the only part 
of the plane where bombs can get out or jamming signals in. It's all up to 
you now. 

Just as you bomb the first installation, the pilot turns around and warns 
you, "The targeting computer is having a problem. If you run off the top or 
bottom of the radar, it will not correct it." You realize what this means. If 
you exit the radar's screen, the system will crash. Havoc will reign, and you 
will surely go down. But enough worrying for now. The enemy awaits. 

I Custom Characters 
Program 1 is merely a simple program to enter custom characters into the 
VIC. If you are unfamiliar with custom characters, you may wish to consult 
the VIC-20 Programmer's Reference Guide or COMPUTEf's First Book of VIC. 
They both give good explanations of custom characters. With minimal 
changes, Program 1 can be customized for your own games. All you need to 
do is alter the DATA statements, following these simple rules: 

1. The first number of each DATA statement contains the POKE value of the 
character to be replaced. For example, line 100 begins with a zero. This 
means we are replacing the @ character. 

2. The next eight numbers define exactly what the new character will look 
like. 

3. Continue repeating this process until you have defined all the characters 
you wish to define. 

4. After you've defined all the characters with DATA statements, add another 
DATA statement (or add this to the end of your last DATA statement) and 
place a -1 there (as in line 190). This will exit the loop. 

241 

J 



Shoot-em-ups 

I Typing the Program 
Program 1 will automatically run Program 2. Disk users should save Pro
gram 2 with the filename BOMBERPRG. Tape users should save Program 2 
on the same tape immediately following Program I, and should delete lines 
60, 70, and 80 of Program 1 and replace line 50 with the following: 
50 POKE198,1:POKE631,131 

Some of the longer lines of the program need to be entered with 
keyword abbreviations. Use a question mark (?) for PRINT and N SHIFT-E 
for NEXT. For a complete list of abbreviations, see you computer manual. 

Program 1. Bomber Squadron 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 PRINT"{CLR}{2 SPACES}CHARACTER GENERATOR":PRINT"{5 SPACES} 
BY CHRIS HILL" : rem 65 

20 POKE52,28:POKE56,28:CLR:FORI=7168T07679:POKEI,PEEK(I+25600 
) : NEXT 

30 CB=7168:READA:IFA=-ITHEN50 
40 FORN=0T07:READB:POKE(CB+A*8+N),B:NEXT:GOT030 
50 POKEI98,2:POKE631,13:POKE 632,13 
55 POKE 36879,8 
60 PRINT "{CLR} {YEL}GET READY ....... {BLK}":PRINT 

D"i CHR$(34)i"BOMBER.PRG"iCHR$(34)i",8" 
70 PRINT "{5 DOWN}RUN" 
80 PRINT "{ HOME}" 
100 DATA0,0,0,120,124,124,120,0,0 
110 DATAl,255,129,249,254,254,249,129,255 
120 DATA2,255,129,129,129,129,129,129,255 
125 DATA3,24,60,60,24,90,36,24,36 
130 DATA49,60,126,126,126,126,60,60,126 
140 DATA50,24,60,60,60,60,60,24,60 
150 DATA51,0,16,56,56,56,16,56,0 
160 DATA52,0,0,16,56,56,16,56,0 
170 DATA53,0,0,16,16,16,16,0,0 
180 DATA54,0,0,0,16,16,0,0,0 
190 DATA55,0,0,0,16,0,0,0,0,-1 

Program 2. Bomber.prg 

:rem 78 
:rem 203 
:rern 187 
:rem 187 
:rem 14 

" {2 DOHN} LOA 
:rem 244 
:rern 130 
:rem 76 
:rem 79 
:rem 33 
:rem 31 

:rem 126 
:rern 170 
:rem 164 

:rern 80 
:rem 23 

:rem 214 
:rem 106 
:rem 191 

For mistake-proof program entry, be sure to use 'The Automatic Proofreader," Appendix C. 

1 POKE36879,8:POKE36869,255 
5 LOC=7955:SC=0:COL=38664+11 
10 PRINT"{CLR}{BLU}{RVS}*** BOMBER SQUADRON***" 
20 FORT=IT02000:NEXT 
30 PRINT" {CLR} {4 SPACES} {RVS} INSTRUCT IONS?" 

242 

:rem 22 
:rem 84 
:rem 22 

:rem 233 
: rem 205 



Shoot -em-ups 

40 GETA$:IFA$=""THEN40 :rem 235 
50 IFA$="N"THEN99 :rem 201 
60 IFA$<>"Y"THEN40 :rem 4 
70 PRINT" {CLR} {RVS} {2 SPACES}YOU ARE NOH A WORLD WAR II BOMBE 

R PILOT1{2 SPACES}AS YOU FLY OVER THE" :rem 228 
71 PRINT"{RVS}ENEMY LINES, YOU ~1UST ATTEMPT TO BOMB ALL 

{3 SPACES}THE INSTALLATIONS THAT"; :rem 163 
72 PRINT"{RVS}PASS UNDERNEATH YOU.{2 SPACES}THE {OFF}B{RVS} I 

S YOUR CROSS{3 SPACES}HAIRS. USE THE" :rem 75 
73 PRINT"{RVS}JOYSTICK TO AIM YOUR{2 SPACES}BOMBS, AND THE FI 

RE{3 SPACES}BUTTON TO BOMB." :rem 204 
74 PRINT"{RVS}AVOID THE {OFF}C[RVS} OR A[6 SPACES}SERIOUS MAL 

FUNCTION{3 SPACES}MAY OCCUR." :rem 102 
99 PRINT"[RVS}PRESS FIRE TO BEGIN." :rem 62 
100 GOSUB1000:IFFB=0THEN100 :rem 80 
109 PRINT"{CLR}{WHT}" :rem 3 
120 GOSUB210 :rem 166 
130 GOSUB250 :rem 171 
139 TI$="000000" :rem 255 
140 GOSUB370 :rem 175 
150 GOSUB1000 :rem 215 
151 IFFBTHENGOSUB410 :GOT0191 : rem 0 
152 POKELOC,32 :rem 54 
160 IFJ2THENLOC=LOC-l :rem 40 
170 IFJ0THENLOC=LOC+l :rem 37 
180 IFJ3THENLOC=LOC-22 :rem 94 
190 IFJITHENLOC=LOC+22 :rem 91 
191 IFLOC=JMTHEN9000 :rem 212 
192 IFLOC>81630RLOC<7702THENGOSUB2000 :rem 21 
195 IFPEEK(LOC)<>0THENPOKELOC,2:GOT0201 :rem 204 
196 POKELOC,l :rem 10 
201 1FT 1$=>" 000030"THENGOSUB5000 : rem 57 
209 GOT0140 :rem 105 
210 REM ENGINE & SIGHTS :rem 37 
220 POKE36878,15:POKE36877,241 :rem 160 
230 POKELOC,32:XX=PEEK(LOC):IFXX=0THENPOKELOC,1:J=1:RETURN 

:rem 57 
235 POKELOC,2:J=0:RETURN{19 SPACES} :rem 16 
250 REM ESTABLISH BLDGS. :rem 180 
260 BB=7681:A=BB+INT(RND(0)*20):B=BB+INT(RND(0)*20) : C=BB+INT ( 

RND(0)*20) :rem 238 
270 D=BB+INT(RND(0)*20):JM=BB+INT(RND(0)*20) :rem 224 
300 Z=INT(RND(1)*22):X=INT(RND(1)*6)+1 :rem 135 
320 IFX=lTHENA=A+Z :rem 93 
330 IFX=2THENB=B+Z :rem 97 
340 IFX=3THENC=C+Z :rem 101 
350 IFX=4THEND=D+Z :rem 105 
355 IFX=5THENJM=JM+Z :rem 21 
360 POKEA,0:POKEB,0:POKEC,0:POKED,0:POKEJM,3:RETURN :rem 246 
370 REM MOVE BLDGS. :rem 79 

243 



Shoot-em-ups 

380 POKEA,32:POKEB,32:POKEC,32:POKED,32:POKEJM,32:A=A+22:B=B+ 
22:C=C+22:D=D+22:JM=JM+22 :rem 68 

390 GG=8163 :IFA>GGTHEN250 : rem 213 
391 IFB>GGTHEN250 :rem 0 
392 IFC>GGTHEN250 :rem 2 
393 IFD>GGTHEN250 :rem 4 
394 IFJM>GGTHEN250 :rem 88 
400 POKEA,0:POKEB,0:POKEC,0:POKED,0:POKEJM,3:RETURN :rem 241 
410 REM BOMB DROP : rem 206 
411 IFPEEK(LOC)=00RPEEK(LOC)=lTHENJ=I:GOT0420 :rem 57 
415 J=0 :rem 81 
420 B0=48 :V0=36876 :N0=200 : rem 160 
421 FORT=IT07:BO=BO+l:NO=NO-l:POKELOC,BO:POKEVO,NO:FORH=IT020 

0:NEXT:NEXT :rem 247 
425 POKEVO,0 :rem 203 
430 IFJ<>lTHENRETURN :rem 42 
440 REM BOMB HITS! :rem 245 
450 V0=36877:HH=16:POKEVO,0:POKEVO,135:HH=HH-l:FORT=IT015:POK 

E36878,HH:FORQW=ITOI00 :rem 182 
451 NEXTQ~v:NEXT:POKEVO,0 :POKEVO, 241: POKE36878, 15 : rem 64 
452 SC=SC+l :rem 96 
453 RETURN :rem 124 
1000 DD=37154:Pl=37151:P2=37152 :rem 126 
1001 POKEDD,127:P=PEEK(P2)ANDI28 :rem 108 
1002 J0=-(P=0) :rem 181 
1003 POKEDD,255:P=PEEK(Pl) :rem 1 
1004 Jl=-«PAND8)=0) :rem 20 
1005 J2=-«PAND16)=0) :rem 69 
1006 J3=-«PAND4)=0) :rem 20 
1007 FB=-«PAND32)=0) :rem 81 
1008 RETURN :rem 169 
2000 POKE36877,0 :rem 92 
2001 POKE36879, 110 :PRINT" {CLR}{ RVS } CONTROL TOWER STATUS 

{2 SPACES}REPORT ... ":FORT=ITOI500:NEXTT :rem 134 
2002 PRINT"{RVS}{2 SPACES}YOU OVERLOADED THE{2 SPACES}FLIGHT 

{ SPACE} COMPUTER I " : rem 184 
2003 PRINT"{RVS}YOU DID DESTROY "~SC~"{5 SPACES}INSTALLATIONS 

." :rem 3 
2004 PRINT"{2 DOWN} {RVS}CONTROL TOWER SIGNING OFF ... ":FORT=lT 

09999:NEXT:CLR:GOTOI :rem 147 
5000 IFTI$=>"000200"THENGOT06000 :rem 36 
5010 IFTI$=>"000130"THENPOKE36879,93:RETURN :rem 26 
5020. IFTI$=>"000100"THENPOKE36879 ,93 :RETURN : rem 24 
5030 IFTI$=>"000030"THENPOKE36879,42:RETURN :rem 21 
6000 REM SUCCESSFUL MISSION :rem 204 
6100 POKE36877,0 :POKE36879, 110 :PRINT" {CLR} {RVS} {WHT }CONTROL T 

OWER STATUS{2 SPACES}REPORT ... " :rem 74 
6150 FORT=IT01500:NEXT :rem 87 
6200 PRINT"{RVS}SUCCESSFUL MISSION{4 SPACES}COMPLETED." 

:rem 152 

244 



Shoot -em-ups I 
6201 PRINT"{RVS}"SC" INSTALLATIONS{8 SPACES}DESTROYED." 

:rem 76 
6202 PRINT"{RVS}PRESS FIRE TO REPLAY" :rem 208 
6203 GOSUB1000:IFFB=0THEN6203 :rem 196 
6204 GOT01 :rem 54 
9000 REM JAM :rem 133 
9010 POKE36a77,0 :POKE36a79, 110 :PRINT" {CLR} {RVS} {WHT } CONTROL T 

OWER STATUS{2 SPACES}REPORT ••• " :rem 77 
9015 FORT=1T01500:NEXT :rem 90 
9020 PRINT"{RVS}COMPUTER SYSTEMS{6 SPACES}JAMMED. SYSTEM 

{a SPACES } MALFUNCTION • PLANE" : rem 244 
9030 PRINT"{RVS}OOWNED BEHIND ENEMY{3 SPACES}LINES." :rem 65 
9040 PRINT"{RVS}NEW PILOT FOR MISSION NEEDED. PRESS FIRE." 

:rem 223 
9050 GOSUB1000:IFFB=i1lTHEN9050 :rem 202 
9060 GOT01 :rem 57 

245 



Marcus 
Warren 
Hobbs 

Ex-Blast 
You're an Ex-Blaster, one of the last of your· race. Only a few Blasters are 
left. The Orions, who destroyed most of your people with a surprise bomb
ing, are planning another attack. This will be the last one, for you know that 
if this attack is successful, it will be the end of your kind. The Orions have 
built hundreds of cities in outer space. These cities are guarded by Orion 
Warriors. Fortunately, the Orions have not built laser cannons, but they do 
have powerful bombs. The bombers need fuel to complete their dastardly 
mission. It's your job to destroy those fuel pods with your laser cannon, with
out being damaged three times by running into such objects as the deadly 
Electro-walls, Spikes, Orion Scouts, Orion Warriors, stars, and fuel pods. 

I A Difficult Task 
"Ex-Blast" is a tough game, but someone has got to save the Ex-Blast people. 
To play, you'll need a joystick, an un expanded VIC, and a good sense of 
timing. As the aliens attack, use the joystick to move out of their way and to 
align yourself with the attacker when you wish to fire. To shoot your laser, 
simply press the fire button. 

The joystick will allow movement in all four directions. If you find the 
stick is not functioning properly, press the RUN/STOP-RESTORE key 
combination and rerun the program. The stick should respond correctly. 

Ex-Blast 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

Some lines of this program require keywords to be abbreviated so that they will not exceed the four-screen-line 
limit. See Appendix B. 

o POKE36881,128 :rem 48 
2 L=I:POKE37154,255 :rem 33 
5 FORT=7424T07436:POKET,0:NEXT:POKE36878,15 :rem 146 
10 CLR:POKE52,28:POKE56,28:POKE36879,8:FORT=7168T07255:READA: 

POKET,A:NEXT:FORA=0T065:READB:POKE828+A,B :rem 130 
11 NEXT :rem 161 
20 PRINT"{CLR}{12 DOHN}{6 RIGHT}{GRN}EX-BLASTI" :rem 191 
30 FORT=128T00STEP-.5:POKE36881,T:NEXT :rem 129 
40 FORT=0T050:POKE36881,T:POKE36879,T:NEXT:FORT=50T00STEP-l:P 

OKE36879,T:POKE36881,T:NEXT :rem 100 
50 GETA$: IFA$="ITHEN40 : rem 236 
51 A$(0)=IJJJJJJJJJJJJJJJJJJJJJ":Z=0:J=10:Q=0 :rem 250 
58 A$(6)="@IJJJJJJJJJJJJJJJJJI@" :rem 214 
60 A$(I)=I@IJJJIIIIIIIIIIIJJJI@":POKE36881,24:POKE36869,255 

61 A$(2)=I@IIIJJJIIIIIIIIIIIII@":POKE36879,8 
62 A$ (3 )="@IIIIIIIIIIIIIJJJIII@" 
64 A$(4)=I@II@I@I@I@I@I@I@I@II@I:PRINT I {CYN}" 

246 

:rem 5 
:rem 156 
:rem 192 
:rem 34 



Shoot -em-ups I 
65 A$(5)="@IICIAIDIAIAIDIAICII@" :rem 140 
66 SD$=" {HOME} {DOWN} {LEFT} {INST}":PRINT"{CLR}":MP=8141:F=100 : 

T=10 :G=7 :H=8: SD=218: P3=158: Pl=3715 7: PRINT" {CI.R} " : rem 193 
67 DD=37154:C=30720 :rem 236 
71 POKE36877,252:FORPQ=lT0100:POKEMP,G :rem 72 
72 SYS828:MP=MP+PEEK(1)-PEEK(2):POKEMP,G:POKEMP+22,H:TE=TE-.2 

:IFTE<0THENTE=0 :rem 29 
73 IFMP>81850RMP<7680THENGOSUB501 :rem 62 
74 IFRND(1)<.3THEN76 :rem 153 
75 GOT081 :rem 14 
76 PP=INT(RND(1)*4):ONPPGOT077,78,79,80 :rem 51 
77 E$="F" :GOT081 : rem 122 
78 E$="D":GOT081 :rem 121 
79 E$="C" : GOT081 : rem 121 
80 E$="A" :rem 147 
81 POKEDD,255:IFPEEK(37151)=94THENGOSUB3000 :rem 68 
83 POKEMP,J:POKEMP+22,J:POKEMP+l,J:POKEMP-l,J:POKEMP+44,J 

:rem 121 
84 PRINT" {HOME} {DOWN}": A$ (0) : PRINTTAB (INT( RND( 1) * 23) ) : E$: PRIN 

TSD$ : POKESD, P3 : POKE646 , INT ( RND ( 1)* 6+ 1) : rem 10 
860=PEEK(MP}:IFO=10RO=30RO=40RO=6THENGOSUB501 :rem 252 
87 PRINTSD$:POKESD,P3:IFPEEK(MP) <>JMIDPEEK(MP) <>32THENGOS UB50 

1 :rem 16 
88 NEXT :rem 175 
179 POKE36877,252:FORPQ=lTOl10 :rem 9 
180 TE=TE-.2:SYS828:MP=MP+PEEK(1)-PEEK(2):IFMP>81850RMP<7680T 

HENGOSUB501 :rem 214 
181 POKEMP,G:POKEMP+22,H :rem 226 
182 POKEDD,255:IFPEEK(37151)=94THENGOSUB3000 :rem 118 
190 Z=Z+l :IFZ>6THENPOKE646, INT( RND( 1 }*6+1) :PRINT" {HOME} {DOWN} 

": A$ (INT( RND( I) *6}) : Z=0 :GOT0210 : rem 47 
20121 PRINT"{HOME}{DOWN}"A$(6} :rem 115 
21213 TE=TE-.3:SYS828:MP=MP+PEEK(1)-PEEK(2}:IFMP>81850RMP<768f21T 

HENGOSUB5f211 :rem 211 
21219 IFRND(1}<.2THENPOKE 77f212+INT(RND(1}*22),2 :rem 19 
21121 POKEMP,J:POKEMP+22,J:POKEMP+23,J:PRINTSD$:POKESD,P3:IFPEE 

K(MP}=JORPEEK(MP}=32THENNEXT :rem 68 
211 W=PEEK(MP} : I F\'l=0 ORW=AORW=9THENGOSUB5 1211 :NEXT :rem 106 
213 L=L+l:GOT071 :rem 162 
51211 POKE36877,2f21f21:FORT=15TOlSTEP-.3:POKE36878,T:NEXT:FORT=ITO 

255:POKE36879,T:NEXT :rem 79 
51212 POKE36877,f21:POKE36878,15:POKE36879,8:M=M+l:TE=f21:IFM=3THEN 

512100 : rem 65 
503 MP=8141:F=100:TE=0:RETUIDl :rem 232 
31211210 TE=TE+l:IFTE>3THENRETURN :rem 112 
31211211 FORPZ=MPT0780f21STEP-22:IFPEEK(PZ}=2THENS=S+20*L :rem 219 
312102 POKEPZ,5:POKEPZ+C,7:POKEPZ,J:NEXT:FORT=180T0254STEP7:POK 

E36875,T:NEXT:POKE36875,f21:RETURN :rem 6121 
41211210 DATAf2I,0,f21,255,f21,f21,f21,f21,f21,0,84,56,124,56,84,f21,60,126,231,2 

39,231,239,110,60,56,84 :rem 33 

247 



Shoot-ern-ups 

4001 DATAI08,186,146,170,170,16,42,62,20,20,8,8,0,0,16,0,16,0 
,16,0,16,0,153,189,126 :rem 251 

4002 DATAI89,153,165,165,153,0,0,28,62,28,8,8,8,8,8,73,93,93, 
93,107,73,170,85,170,85,170 :rem 62 

4003 DATA85,170,0,0,0,0,0,0,0,0,0 :rem 78 
4004 DATAI69,128,141,19,145,169,0,133,1,133,2,169,127,141,34, 

145,162,119,236,32,145 :rem 39 
4005 DATA208,4,169,1,133,1,169,255,141,34,145,162,118,236,17, 

145,208,4,169,22,133,1 :rem 35 
4006 DATA162,110,236,17,145,208,4,169,1,133,2,162,122,236,17, 

145,208,4,169,22,133,2,96 :rem 177 
5000 PRINT" {CLR}" : POKE36869, 240: PRINT" {HOME} {3 DOVlN}": :X= (S< 1 

00ANDS>=0) :rem 1 
5001 Xl=(S>=100ANDS<300}:X2=(S>=300ANDS<600}:X3=(S>=600ANDS<1 

000):X4=(S>=1000) :rem 153 
5002 IFXITHEND$="{RED}SPACE CADET" :rem 224 
5003 IFX2THEND$="{CYN}CAPTAIN" :rem 152 
5004 IFX3THEND$="{BLU}\vARRIOR" :rem 64 
5005 IFX4THEND$="{GRN}TRUE EX-BLASTER1{YEL}THE BEST" :rem 0 
5006 IFXTHEND$="LOUSY PILOT11" :rem 48 
5007 PRINT"YOU ARE A ":D$:PRINT"{PUR}YOUR {RED}SCORE{YEL} WAS 

": S : rem 251 

248 



Jim Koermer I 
and Bo Short 

Meteors 
"Meteors" is for the unexpanded VIC and requires a joystick. 

Maneuver your spaceship at the bottom of the screen (represented by 
the spade) to avoid a collision with a deadly meteor. Any contact with a me
teor means instan~ destruction for your spaceship. 

Destroy the meteors with your laser before they reach your ship. But be 
careful-only the solid meteors can be destroyed by your laser. There is no 
way to destroy the others. 

You'll be rewarded with 15 points for each meteor destroyed, and you 
have just two spaceships with which you can do battle. After the game is 
over, your score and the high score will be displayed. 

Meteors 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 HI=0 : rem 95 
20 A=8086:C=7778:D=7770:E=7916:K=7832:H=7948:J=8002:L=81:M=32 

:N=44:Q=22:SC=0:LI=2 :rem 85 
30 POKE36879,106:PRINT"{CLR}{WHT}":GOSUB410 :rem 88 
50 POKEA,65:POKEC,L:POKED,L:POKEE,L:POKEF,L:POKEH,L:POKEJ,87 

:rem 121 
60 DD=37154:Pl=37151:P2=37152 :rem 35 
70 POKEDD,127:P=PEEK(P2)ANDI28:J0=-(P=0):POKEDD,255:P=PEEK(PI 

) :rem 180 
80 Jl=-((PAND8)=0):J2=-((PANDI6)=0):J3=-((PAND4)=0):FB=-((PAN 

D32)=0) :rem 186 
90 X=0:IFJ0THENX=2 :rem 103 
100 IFJ2THENX=-2 :rem 191 
110 IFFBTHENGOSUB480 :rem 244 
120 Al=A+X :rem 6 
130 IFAl<8076THENAl=A :rem 197 
140 IFAl>8096THENAl=A :rem 202 
150 POKEA,M:POKEAl,65:A=Al :rem 27 
160 Z=INT(RND(I)*10)*2 :rem 183 
170 IFC=ATHENGOSUB580 :rem 52 
180 IFC>8075THENPOKEC,M:C=7768+Z :rem 178 
190 POKEC,M:C=C+N:POKEC,L :rem 31 
200 Y=INT(RND(I)*10)*2 :rem 177 
210 IFD=ATHENGOSUB580 :rem 48 
220 IFD>8075THENPOKED,M:D=7768+Y :rem 175 
230 POKED,M:D=D+N:POKED,L :rem 30 
240 W=INT(RND(I)*10)*2 :rem 179 
250 IFE=ATHENGOSUB580 :rem 53 
260 IFE>8075THENPOKEE,M:E=7768+W :rem 180 
270 POKEE,M:E=E+N:POKEE,L :rem 38 
280 V=INT(RND(I)*10)*2 :rem 182 
290 IFK=ATHENGOSUB580 :rem 63 

249 



Shoot -em-ups 

300 IFK>8075THENPOKEK,M:K=7768+V :rem 192 
310 POKEK,M:K=K+N:POKEK,L :rem 57 
320 T=INT(RND(1)*10)*2 :rem 175 
330 IFH=ATHENGOSUB580 :rem 55 
340 IFH>8075THENPOKEH,M:H=7768+T :rem 185 
350 POKEH,M:H=H+N:POKEH,87 :rem 84 
360 S=INT(RND(1)*10)*2 :rem 178 
370 IFJ=ATHENGOSUB580 :rem 61 
380 IFJ>8075THENPOKEJ,M:J=7768+S :rem 194 
390 POKEJ,32:J=J+44:POKEJ,87:GOT070 :rem 108 
410 FORI=7680T07701: POKEI, 120 : NEXT : PRINT" {7 RIGHT }r1ETEORS I" 

:rem 73 
430 FORI=7724T07745:POKEI,121:NEXT:FORI=8120T08141:POKEI,120: 

NEXT : rem 10 
450 FORI=8164T08185:POKEI,121:NEXT :rem 61 
460 PRINT"{19 DOWN}SCORE 0{7 RIGHT}LIFE 2":RETURN :rem 145 
480 B=A-N:POKEB,93:POKEB-Q,93:POKEB-N,93:POKEB-66,93:POKEB-88 

,93 : rem 85 
490 IFB=CORB-44=CORB-88=CTHENGOSUB550:C=7768+Z :rem 74 
500 IFB=DORB-44=DORB-88=DTHENGOSUB550:D=7768+Y :rem 69 
510 IFB=EORB-44=EORB-88=ETHENGOSUB550:E=7768+W :rem 72 
520 IFB=KORB-44=KORB-88=KTHENGOSUB550:K=7768+V :rem 96 
530 POKEB,M:POKEB-22,M:POKEB-N,M:POKEB-66,M:POKEB-88,M:POKEB+ 

22,M:RETURN :rem 33 
550 POKE36878,15:POKE36877,159:FORI=lT0100:POKE36878,0 

:rem 143 
560 SC=SC+15:PRINT"{HOME}{21 DOWN}SCORE ";SC:RETURN :rem 127 
580 POKE36878,15:POKE36877,145:FORI=lT0500:NEXT:POKE36878,0:L 

I=LI-1 :rem 9 
590 PRINT"{HOME}{21 DOWN}{13 RIGHT}LIFE ";LI:IFLI>0THENRETURN 

:rem 43 
600 PRINT"{CLR}{ll DOWN}{6 RIGHT}GAME{RIGHT}OVERl":PRINT" 

{5 RIGHT}PLAY AGAIN 7" :rem 104 
610 IFSC>HITHENHI=SC :rem 30 
620 PRINT"{4 UP}{4 RIGHT}HIGH SCORE";HI:PRINT"{6 RIGHT}SCORE 

{SPACE}";SC :rem 143 
640 GETA$:IFA$=""THEN640 :rem 87 
650 IFA$="Y"THENGOT020 :rem 51 
660 PRINT"{CLR}{BLU}":POKE36879,27:END :rem 63 

250 



R~~!~ I Hyper Ballshot 

"Hyper Ballshot" is a good old-fashioned target game for the un expanded 
VIC. It is a two-player game using paddles. 

Across the top of the screen you'll see each player's score, the time 
clock, and the level the player who is playing reached. Near the top of the 
game board is the area where the targets will appear. The blank areas are 
where the targets will appear one at a time. The target's level, up to ten, has 
its own color. These colors are red, cyan, purple, green, and blue. After blue, 
the sequence repeats again. The value for these targets is ten times the level 
number. However, the yellow targets are worth minus five times the level 
value. 50 accuracy counts a lot. 

Each player takes a turns which lasts 90 seconds. Begin each round by 
pressing and releasing the fire button. When you do this, the clock resets to 
zero. Using the knob line up the "shooter" with the target. When you press 
the fire button, the top and side bars turn orange and a ball flies into the 
target. 

When you type in the program, be extra careful of lines 1000 and 
greater. All DATA statements, except the last one, have nine numbers. The 
last one has ten. 

When you run the program, if you have an error in lines less than 1000, 
press RUN j5TOP-RE5TORE, correct the mistake, and restart the program 
by typing RUN2. If you just run the program, you will get an OUT OF 
MEMORY message. Be sure to use the integer arrays as shown. Not typing 
the percent (%) sign increases the memory needed for the arrays, and the 
program will not run. 

Hyper Ballshot 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 GOSUB200:GOTo1000 :rem 119 
2 GOSUB200 :rem 68 
4 DI~y%(8,5,1),H%(16),S(1):V=36878:GOSUB700:POKEV-9,255:POKEV 

,47:POKEV+1,9:GOSUB300 :rem 97 
5 H=0:B=2:T=38864:MM=T+7 :rem 116 
30 FORI=1T015STEP2:H%(I)=1:H%(I+1)=-1:NEXT:POKEV,47 :rem 46 
35 TI$="000130":PR=0:KK=7 :rem 91 
40 M=M-SGN(M-(15-(INT(PEEK(36872+PR)/18.2»» :rem 209 
55 K=T+M:POKEMM+22,0:POKEK+22,9:MM=K :rem 176 
60 GOSUB600:IFF(PR)THENPOKEV,143:GOSUB500:POKEV,63 :rem 153 
70 PRINT" {HOME} {WHT} "TAB (13 ) i "TIME" i MID$ (TI $ ,4,1) i" : " i RIGHT$ ( 

TI$,2):IFF(PR)=0ANDHTHEN80 :rem 185 
75 PRINT" {HOME }SCOREU {5 SPACES}{5 LEFT}" i S( 0) :PRINT" {HOME} 

{2 DOWN}SCORE#2{5 SPACES}{5 LEFT}"iS(l) :rem 114 
76 PRINT" {HOME} {2 Dmm}" i TAB (13) i "LEVEL#" i B-l+BB :H=-1 : rem 251 

251 



Shoot -em-ups 

80 IFTI$="00f2113f21"THENGOSUB8f21f21 :GOSUB790 : rem 254 
90 GOT040 : rem 6 
200 PRINT" {CLR}{BLU} "TAB(4) "HYPER BALLSHOT" :rem 150 
203 PRINTTAB(9)~"{DOWN}BY:":PRINTTAB(5)~"{DOHN}ROBERT LEWIS" 

:rem 238 
205 PRINT" {4 DOWN}YOU WILL NEED PADDLES" : rem 250 
210 PRINT"{2 DOWN} {RVS}STAND BY FOR THE GAME{8 SPACES}TO BEGI 

N{7 SPACES}" :rem 151 
22f21 RETURN :rem 116 
3f210 GOSUB390 :PRINT" {CLR} {5 DOWN} {RVS H*H OFF} {2 SPACES}" ~ :T=3 

2 :GOSUB380 :PRINT" {2 SPACES} {RVS }£{ OFF}": PRINT" {RVS} g*j 
{OFF} "~:GOSUB380 - :rem91 

310 PRINT" {RVS} £ {OFF}": PRINT" {BLU} {RVS} {2 SPACES} {OFF} *" ~ : 
T=86:GOSUB380:PRINT"*{RVS}{2 SPACES}{OFF}":PRINT"{RVS} 
{2 SPACES} {OFF} > {WHT}" ~ :T=94 :GOSUB380 : rem 6 

320 PRINT" {BLU} < {RVS} {2 SPACES} {OFF}": PRINT" {RVS} {2 SPACES} 
{OFF} >" ~ :FORB=l T07 :PRINT" {YEL}£{BLK} J" ~ :NEXT:PRINT" {YEL} 
Y{BLU}<{RVS}{2 SPACES}{OFF}" :rem 226 

330 GOSUB390 :PRINT" {RVS} {2 SPACES} {OFF}@{BLK}" ~ :T=90 :FORH=l TO 
4:FORPR=lT03:GOSUB38f21 :rem 17f21 

340 GOSUB390:PRINT"@{RVS}{2 SPACES}{OFF}":PRINT"{RVS} 
{2 SPACES} {OFF} @ {BLK}" ~ : NEXTPR: T=T-l : NEXTH : rem 181 

350 T=61 :GOSUB380:GOSUB390:PRINT"@{RVS}{2 SPACES} {OFF} {WHT} 
{HOME} II : rem 66 

360 RETURN :rem 121 
38f21 FORB=lT015:PRINTCHR$(T)~:NEXT:RETURN :rem 118 
390 POKE646,9:RETURN :rem 234 
50f21 POKEK,7:FORY=lTOll:POKEK-(Y*22)+22,0:POKEK-(Y*22),7:POKEV 

-2,240-Y*2:NEXTY:J=K-Y*22 :rem 147 
5f215 IF-(H%(M»THENS(PR)=S(PR)-5*(B-l+BB):POKEV-3,128 :rem 188 
510 POKEV-2,0:POKEJ+22,f2I:POKEV-3,f2I:IFH%(M)THENRETURN :rem 210 
515 IFM/2=INT(M/2)THENPOKEJ,f2I:S(PR)=S(PR)+10*(B-l+BB) :H%(M)=-

1:X=X+l:POKEV-3,255 :rem 166 
520 IFX=7THENX=0:B=B+l:IFB=7THENB=2:BB=5 :rem 204 
530 GOSUB790 :rem 184 
540 POKEV-3,0:RETURN :rem 244 
6f210 POKE37154,127:F(1)=-«PEEK(37152)AND128)=0):POKE37154,255 

:rem 37 
610 F(0)=-«PEEK(37137)AND16)=f2I):RETURN :rem 166 
700 FORMM=0TOl:FORB=0T05:H%(0,B,MM)=INT(RND(1)*7)+1:NEXTB,MM 

710 
720 
730 
740 
750 
760 
790 

8f210 

252 

FORMM=0TOl:FORB=0T05:FORT=lT06:POKEV+l,25+T 
H=INT(RND(1)*7)+1 
FORPR=0T07 

:rem 137 
:rem 235 
:rem 125 
:rem 106 

IFW%(PR,B,MM)=HTHEN72f21 :rem 26 
NEXTPR:W%(T,B,MM)=H:NEXTT,B,MM :rem 146 
RETURN :rem 125 
POKET-12*22+W%(X,B-2,PR)*2,B:H%(W%(X,B-2,PR)*2)=0:RETURN 

:rem 145 
POKET-12*22+W%(X,B-2,PR)*2,f2I:H%(W%(X,B-2,PR)*2)=-1:POKEV, 
47 : rem 225 



Shoot-em-ups 

804 FORQ=lT0100:POKEV-3,255-Q:NEXT:POKEV-3,0 :rem 207 
805 IF-PRANDTI$=>1000130 I THENPRINT" {HOME} {4 DOWN} {WHT}ANOTHER 

GAME?{RVS}(Y OR{SHIFT-SPACE}N) {OFF}":GOT0950 :rem 38 
810 X=0:B=2:IFS(0)<>0THENPR=1:8B=0:H=0 :rem 233 
820 GOSUB600:IFF(PR)=0THEN820 :rem 232 
830 GOSUB600:IFF(PR)THEN830 :rem 125 
840 TI$="000000":POKEV,95:RETURN :rem 113 
910 NEXT:END :rem 234 
950 GETA$:IFA$=IIOR(A$<>IYIANDA$<>"N")THEN950 :rem 17 
960 IFA$="Y"THENPOKEV-9,240:RUN2 :rem 170 
970 POKEV-9,240:POKEV+l,27:PRINT I {CLR}{BLU}GOODBYElllll":POKE 

56,PEEK(56)+2:END :rem 183 
1000 X=PEEK(56)-2:POKE52,X:POKE56,X:POKE51,PEEK(55):CLR 

1010 CS=256*PEEK(52)+PEEK(51) 
1020 FORI=CSTOCS+511:POKEI,PEEK(I+33792-CS):NEXT 
1030 READX:IFX=0THEN2 
1040 FORI=XTOX+7:READY:POKEI,Y:NEXT 
1050 GOT01030 
1100 DATA7352,28,50,125,127,127,127,62,28 
1110 DATA7360,0,28,54,58,62,62,28,0 
1120 DATA7368,0,0,24,52,60,60,24,0 
1130 DATA7376,0,0,16,40,56,16,0,0 
1140 DATA7392,255,165,231,153,153,239,165,255 
1150 DATA7400,126,102,90,102,102,90,102,126 
1160 DATA7408,0,0,60,126,165,231,189,129 
1170 DATA7168,190,190,190,190,190,190,190,190,0 

:rem 56 
:rem 64 

:rem 205 
:rem 39 
:rem 70 

:rem 195 
:rem 20 

:rem 231 
:rem 165 
:rem 115 
:rem 235 
:rem 92 

:rem 228 
:rem 69 

253 



RO~~~i~S I Laser Command 

Scout ships from the planet Zardon are orbiting our planet to determine the 
chances of a successful invasion. Your mission, as First Master Gunner of La
ser Defense Post One, is to destroy as many of the scout ships as possible. 
Your commander thus hopes to prove to the Zardon Empire that the risks of 
invasion are too great. Will you be able to down enough scouts alone? The 
commander thinks not and assigns Second Master Gunner to Laser Defense 
Post Two. Now you must prove you deserve the title of First Master Gunner 
by scoring the most hits. 

This exciting game requires the Super Expander cartridge and paddle 
controllers. If you had thought the Super Expander was merely for drawing 
graphs and pictures, then look again. These extra graphics capabilities can 
greatly enhance game play. In this game, the paddle controllers are used to 
direct laser beams at precise angles on the screen. 

I Special Features 
When you run "Laser Command," it first checks to see if you have inserted 
the Super Expander by PEEKing memory location 56 (top of RAM). The value 
found there should be 29 if the graphics screen has not yet been set up with 
a GRAPHIC command. 

To set up the graphics screen, the Super Expander sets aside over 3K of 
memory for bitmapping a 20 X 20 space area. The top-of-RAM pointer is set 
to 16. Using the GRAPHIC4 command will reset the pointer to 29. This is 
why you seem to lose over half the memory indicated on cold start after using 
GRAPHICl, GRAPHIC2, or GRAPHIC3. You actually do lose it to the 
graphics screen and should bear this in mind when writing programs. This 
program uses all but about 30 bytes in execution, so it would be wise not to 
add unnecessary spaces when typing it in. 

I Beginning Play 
After pressing a controller fire button, you may center the screen with the 
cursor keys. You then have the option of playing against the computer or an
other player. If you choose to play against your VIC, be aware that it will 
prove to be a formidable opponent. The better you play, the harder the com
puter tries to beat you. This automatic level control is programmed in line 600. 

Keep practicing: Experience will help you beat the VIC! 

254 



Shoot-em-ups 

Laser Command 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

105 

110 

115 

120 
125 
130 
135 

140 
145 

150 
155 

160 
165 

170 

175 
180 

185 
190 
195 
200 
205 
210 
215 
220 
225 
230 
235 
240 
245 
250 

255 

260 
265 
270 
275 
280 

IFPEEK(56)=290RPEEK(56)=16THENI15:REM CHECKS FOR SUPER EX 
PANDER : rem 54 
PRINT"{CLR} {RVS} {RED} REQUIRES SUPEREXPANDERINSERT AND REL 
OAD GAME": END : rem 4 
PRINT"{CLR} {3 DOHN} {RVS} {BLU}REQUIRES PADDLE CON
{2 SPACES}TROLLERS. PUSH A FIRE{3 SPACES}BUTTON TO START. 
{4 SPACES}" :rem 13 
IFRJOY(0)=0THENI20 :rem 22 
GOSUB540:Z=RND(-TI):REM RANDOMIZE :rem 72 
GRAPHIC2:COLORI4,4,0,0 :rem 250 
CHAR0,9,"PO":CHARI9,9,"@L":CHAR9,0,"L":CHAR9,19,"@":CHARl 
0,0,"O":CHARI0,19,"P - - :rem 179 
REGION2:CHAR3,1,"Z LASER{2 SPACES}COMMAND Z :rem 235 
REGIONl:CHAR6,2,"*USE CURSOR KEYS":CHAR8,2~"TO CENTER SCR 
EEN : rem 124 
REGION4:CHARll,4,"CHOOSE ONE: :rem 211 
REGIONl:CHARI4,0,"1. YOU VS. COMPUTER":CHARI6,0,"2. 2 PLA 
YER/PRACTICE :rem 253 
GETA$:REM SCREEN CENTERING AND MENU SELECTION :rem 7 
IFA$=" {RIGHT} "THENPOKE36864,PEEK(36864)+I:GOSUB540:IFP EEK 
(36864)=12THENPOKE36864,3 :rem 165 
IFA$="{DOWN}"THENPOKE36865,PEEK(36865)+l:GOSUB540:IFPEEK( 
36865)=44THENPOKE36865,20 :rem 205 
IFA$<>"I"ANDA$<>"2"THENI60 :rem 110 
POKE785,VAL(A$):REM STORES SELECTION FOR FUTURE REFERENCE 

SCNCLR:COLOR6,2,1,0 
CHARl,0,"{2 SPACES}BLAST THE UFOS 
CHAR3,0,"THAT FLY ABOVE THE 
CHAR5,0,"LASER DEFENSE POSTS. 
CHAR7,0,"YOU GAIN 100 POINTS 
CHAR9, 0, "FOR EACH HIT BUT 
CHARll,0,"LOSE 10 POINTS FOR 
CHARI3,0,"EACH MISS. 
CHARI5,0,"TIME LIMIT: 3 MIN. 
REGIONRND(I)*8:CHARI8,0, "*PRESS FIRE BUTTON.* 
GOSUB540 

:rem 38 
:rem 105 

:rem 39 
:rem 4 

:rem 199 
:rem 32 
:rem 92 
:rem 26 
:rem 59 

:rem 244 
:rem 157 
:rem 179 

IFRJOY(0)=0THEN230 
GOSUB540 
SCNCLR:CLR:COLOR0,6,0,0:GOSUB550:REM 

:rem 27 
:rem 180 

SCREEN AND VARIABLE 
{SPACE}SET-UP 
SX=1000:SY=SX:B=6:S$=" 
36865):P=PEEK(785) 
GOSUB580:GOSUB585 
REM DRAW DEFENSE POSTS 

:rem 131 
":U$="!":S=I:H=PEEK(36864):V=PEEK( 

:rem 173 
:rem 17 
:rem 66 

REGION5 
DRAW2,311,1023T0361,835T0411,1023:PAINT2,361,900 
REGION4 

:rem 146 
:rem 88 

:rem 146 

255 



I Shoot-em-ups 

285 DRAW2,612,1023T0662,835T0712,1023:PAINT2,662,900 :rem 105 
290 TI$="000000 :rem 219 
295 IFSX=00RSY=0THEN485 :rem 209 
300 RJ=RJOY(0)/4:IFTI$>"000300"THEN485 :rem 147 
305 REM FIRING ROUTINES :rem 180 
310 X=RPOT(0)*4:IFRDOT(X,PZ)<>0AND(RJ=10RRJ=3)THENXZ=1 

:rem 162 
315 Y=RPOT(I)*4:IFRDOT(Y,PZ)<>0AND(RJ=20RRJ=3)THENYZ=1 

:rem 172 
320 REGIONl:S0UND0,(RJANDl)*230,0,0,3:IFRJ=00RRJ=2THENGOSUB54 

0:GOT0350 :rem 65 
325 DRAW2,361,815TOX,PZ :rem 91 
330 DRAW0,361,815TOX,PZ :rem 85 
335 IFRJANDITHENSX=SX-10 :rem 26 
340 IFXZ=ITHENGOSUB415 :rem 143 
345 XZ=0:GOSUB580 :rem 18 
350 REGIONl:S0UND0,0,(RJAND2)*101,0,3:IFP=ITHEN595 :rem 202 
355 IFRJ=00RRJ=ITHENGOSUB540:GOT0385 :rem 59 
360 DRA~Y2,662,815TOY,PZ :rem 95 
365 DRAW0,662,815TOY,PZ :rem 98 
370 IFRJAND2THENSY=SY-10 :rem 28 
375 IFYZ=ITHENGOSUB415 :rem 152 
380 YZ=0:GOSUB585 :rem 23 
385 REGIONINT(RND(I)*6+2) :rem 195 
390 REM UFO MOVEMENT :rem 213 
395 CHARZ,Q,S$:Q=Q+S:IFQ=200RQ=-1THENGOSUB550 :rem 95 
400 CHARZ,Q,U$ :rem 46 
405 GOT0295 :rem 114 
410 REM EXPLOSION SUBROUTINE :rem 74 
415 IFTI$>"000230"THENB=2 :rem 113 
420 CHARZ,Q,"V :rem 175 
425 FORL=9T00STEP-l :rem 177 
430 POKE36864,H+l:POKE36865,V+L:IFL=8THEN:COLOR1,7,0,0 

:rem 205 
435 POKE36864,H:POKE36865,V:IFL=7ANDXZ=1THEN:COLOR6,5,0,0 

:rem 244 
440 POKE36864,H-l:POKE36865,V-L:IFL=7ANDYZ=ITHEN:COLOR6,4,0,0 

445 POKE36864,H:POKE36865,V:IFL=4THEN:COLOR0,B,0,0 
450 SOUND0,0,0,175+L*5,L 
455 NEXT:CHARZ,Q,S$:GOSUB550 
460 REM SCORING 
465 IFXZ=ITHENSX=SX+110 
470 IFYZ=ITHENSY=SY+110 
475 RETURN 
480 REM END OF GAME 
485 FORL=IT0500:NEXT:SOUND0,0,0,0,0 
490 REGION7 
495 CHAR5,0,"REPLAY - PRESS FIRE 
500 CHAR7,0,"RESELECT - HIT SHIFT 
505 CHAR9,0,"QUIT - PRESS SPACE 

256 

:rem 199 
:rem 6 

:rem 33 
:rem 3 

:rem 147 
:rem 205 
:rem 204 
:rem 128 

:rem 6 
:rem 86 

:rem 152 
:rem 76 

:rem 123 
:rem 4 



------ ._--

Shoot-em-ups 

510 FORL=lT0999:NEXT :rem 254 
515 COLOR(VAL(RIGHT$(TI$,2»+2)/4,VAL(MID$(TI$,5,1»+2,0,0 

:rem 180 
520 IFRJOY(0)<>0THENFORL=lT0150:NEXT:GOT0245 :rem 37 
525 IFPEEK(653)=lTHENCLR:SCNCLR:GOT0130 :rem 195 
530 IFPEEK(197)=32THEN:GRAPHIC4:POKE36879,27:PRINT"{CLR}{BLU} 

":GETA$:END :rem 215 
535 GOT0515 :rem 113 
540 FORL=lT075:NEXT:RETURN:REM MULTI-PURPOSEDELAY :rem 79 
545 REM UFO DIRECTION AND ALTITUDE :rem 60 
550 Z=INT(RND(1)*8+5):PZ=Z*(55-Z*.1):REM LASER ALTITUDE FACTO 

R :rem 181 
555 S=-S :rem 175 
560 IFS<0THENQ=19 :rem 16 
565 IFS>0THENQ=0 :rem 221 
570 RETURN : rem 124 
575 REM DISPLAY SCORE :rem 23 
580 REGION5:CHARl,0,STR$(SX)+S$:RETURN :rem 124 
585 REGION4:CHARl,19-LEN(STR$(SY»,STR$(SY):RETURN :rem 144 
590 REM COMPUTER FIRE CONTROL SUBROUTINE :rem 72 
595 Y=INT(RND(1)*1024) :rem 204 
600 IFRND(1)<SX*.0003THENY=Q*(55-Q*.1) :rem 143 
605 IFRDOT (Y, PZ) < > 0THENYZ=1 : rem 221 
610 SY=SY-10:S0UND0,0,202,0,3 :rem 132 
615 GOT0360 :rem 110 

257 



J~gcr:;, I Space Blockade 

Warp-speed action (well, almost) and an ever-changing kaleidoscope of color 
graphics are only part of the unusual game features of "Space Blockade" for 
the unexpanded VIC. 

I Running the Blockade 
The game field consists of a bordered playing screen that begins to fill with 
randomly located alien symbols. Meanwhile, blockading bricks also begin 
appearing. A white spaceship character, which serves as a shooter, is located 
at the top of the screen. The shooter can be pointed up, down, right, or left 
and is moved by using the joystick. The aliens serve as targets that are ex
ploded by aiming the shooter and pressing the fire button. The bricks act as 
barriers that stop shooter movement. The object of the game is to blast as 
many of the alien symbols as you can before being blockaded by the bricks. 

If you chose a play level of 6 from the scale of 1 to 9, the shooter will 
be stationary. Moving the joystick in anyone of the four primary directions 
points the shooter accordingly. If the joystick is held in that position, the 
shooter will move slowly. Press the fire button and the shooter takes off at 
super speed until it is blocked by a brick or the wall. If the shooter was aimed 
at a target, the fire button must be pressed to explode the target and score. 

The action is faster if the shooter is aimed at a target and the fire button 
pressed. In this case the shooter zips to the target and obliterates it. The cur
rent game score, denoted by an S at the top of the screen, updates to score 
the hit. Scoring values vary based on the color of the target. The high score 
is denoted by an H at the top of the screen. 

Blue checkered bricks appear on the game field at random locations as 
new targets continue to show up. The bricks block the shooter's movement, 
forcing you to maneuver the shooter. Whenever you decide it is time to give 
up, the play can be ended by pressing the Y key. 

I Easy or Hard 
You can choose a level of difficulty ranging from 1 (fast) to 9 (slow). Once 
you've chosen the level, the screen will blank for a few seconds while data 
for the custom graphics is POKEd to a protected memory location. The bor
dered game field then appears with the shooter located at top center of the 
border. 

At levels 1 to 5, the shooter will alternately rotate clockwise while 
remaining at its initial position. The speed of rotation is dependent upon the 
level of difficulty chosen. You must coordinate joystick action with the 
shooter direction in order to move the shooter. Of course, this makes the 
play more challenging and the scoring more difficult. 

258 



Shoot -em-ups 

Play levels of 6 to 9 make the shooter easier to control. Within this 
range the shooter is fixed in its initial position until rotated and moved by 
the joystick. Shooter movement is relatively slow if the joystick is held in the 
direction of movement position. However, if the fire button is pressed when 
the shooter is pointed at a target, the shooter will zip to the target fast as a 
speeding bullet. 

Space Blockade 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 POKE51,0:POKE52,28:POKE55,0:POKE56,28:CLR:DIMJ(2,2):POKE37 
139,0:POKE36879,93 :rem 137 

15 PRINT"{CLR}" :rem 202 
20 JA=37137:JB=37152:JC=37154:H=0:N=0:FORM=256T0274:READD:POK 

EM,D:NEXT :rem 225 
30 SYS256:POKE36878,15:FORM=7432T07551:READD:POKEM,D:NEXT 

:rem 51 
40 FORL=0T02:FORK=0T02:READJ(K,L):NEXTK,L :rem 119 
50 POKE36869,255:S$="*)*,**,**,**,**,**,*)*":M=7680:C=30720 

:rem 147 
60 PRINT"{CLR}{CYN}": :POKE198,0:POKE36879,8:FORX=0T021:PRINTS 

$: :NEXT : rem 199 
70 PRINT" {HOME} {2 DOWN} "SPC( 6)" {10 SPACES}": SPC (12)" {PUR} BLO 

CKADE ": :rem 67 
80 PRINTSPC(12)"{10 SPACES}{2 DOWN}"SPC(9)"{YEL}BY: JOE W. RO 

CKE" : rem 243 
90 PRINT"{4 DOWN}{2 RIGHT}SELECT{2 SPACES}DIFFICULTY{DOWN}":S 

PC(10)"1 {RVS}--{OFF} 9" :rern 251 
100 GETA$:IFA$>"9"ORA$<"1"THEN100 :rem 54 
110 E=VAL(A$):IFE>5THENN=5:E=E-5 :rem 128 
120 S=0: R=0 :PRINT" {CLR}" :POKE36879, 8 :FORL=M+23TOM+42: POKEL, 39 

:POKEL+462,37:POKEL+C+462,3 :rem 120 
130 POKEL+C,3:NEXT:FORL=M+44TOM+462STEP22:POKEL,38:POKEL+21,4 

0:POKEL+C,3:POKEL+C+21,3 :rem 231 
135 NEXT :rem 216 
140 T=RND(-TI):T=M+INT(RND(I)*20)+45:W=35:POKET,W:POKE646,3:P 

RINT"{HOME}{GRN}"SPC(12)"H":H :rem 237 
150 FORL=lTOE:GOSUB330:U=J(X+l,V+l):Y=T+U:IFPEEK(Y)=32THENPOK 

ET,32:T=Y :rem 173 
160 IFFBTHENGOSUB360 :rem 246 
170 NEXTL:IFN<>5THEN220 :rem 172 
180 W=W-l:IFU=22THENW=34 :rem 203 
190 IFU=-22THENW=32 :rem 116 
200 IFU=-lTHENW=35 :rem 60 
210 IFU=lTHENW=33 :rem 14 
220 IFN=9THENGOSUB360:IFR>200THEN450 :rem 226 
230 A=INT(RND(1)*6):W=W+l:IFW>36THENW=33 :rem 134 
240 IFA=0THENA=7 :rem 183 

259 



Shoot-ern-ups 

250 PRINT" {HOME} {RIGHT} {YEL}S"S:POKET+C,A:POKET ,W:B=M+INT( RND 
(1)*440)+44:U=INT(RND(1)*3)+41 :rern 55 

260 POKET+C,1:B=B+l:IFB>8162THENB=7725 :rern 218 
270 IFPEEK(B)=32THENPOKEB,U:POKE36874,100+U:POKEB+C,A:GOTO310 

:rern 226 
280 IFPEEK(B)=45THEN260 :rern 78 
290 IFPEEK(B)<41THEN260 :rern 74 
300 POKEB,45:POKEB+C,3:R=R+l:IFR=398THEN450 :rern 76 
310 POKE36874,0:IFPEEK(197)=11THEN450 :rern 114 
320 GOT0150 :rern 100 
330 POKEJC,127:S3=-«PEEK(JB)AND128)=0) :POKEJC,255 :rern 127 
340 P=PEEK(JA):Sl=-«PAND8)=0):S2=«PAND16)=0):S0=«PAND4)=0) 

:rern 172 
350 FB=-«PAND32)=0):X=S2+S3:V=S0+S1:RETURN :rern 63 
360 IFW=33THEND=-22 :rern 99 
370 IFW=34THEND=1 :rern 5 
380 IFW=35THEND=22 :rern 58 
390 IFW=36THEND=-1 :rern 54 
400 Y=T+D:IFPEEK(Y)=32THENPOKET,32:POKEY,W:T=Y:GOT0400 

:rern 218 
410 IFPEEK(Y)<410RPEEK(Y)=45THENRETURN :rern 185 
420 S=S+PEEK(Y):POKEY,44:POKET,32:T=Y :rern 59 
430 FORL=200T0220:POKE36877,L:NEXT:POKE36877,255:FORL=lT0200: 

NEXT:POKE36877,0:POKET,W :rern 22 
440 RETURN :rern 120 
450 POKE36869,240:POKE36879,253 :rern 218 
460 N=0 :PRINT" {CLR} {BLK} {RVS} {2 OOWN} "SPC( 7) "GAME OVER" :PRINT 

"{4 DOWN} {RED} SCORE"S:IFS>HTHENH=S :rern 162 
470 PRINT"{2 OOWN}{BLU} HIGH SCORE"H:PRINT"{4 DOWN}{GRN} 

{3 SPACES}PLAY AGAIN (yiN)" :rern 187 
480 FORL=lT01200:IFPEEK(197)=11THEN50 :rern 182 
490 IFPEEK(197)=28THEN510 :rern 175 
500 NEXTL:N=9:POKE36869,255:GOT0120 :rern 101 
510 POKE36869,240:POKE36879,27:PRINT"{CLR} {BLU} ":END :rern 116 
520 DATA 162,0,189,0,128,157,0,28,189,0,129,157,0,29,232,208, 

241,96,0 :rern 67 
530 DATA 56,124,56,16,84,124,84,68,0,242,39,127,39,242,0,0 

:rern 41 
540 DATA 68,84,124,84,16,56,124,56,0,79,228,254,228,79,0,0 

:rern 59 
550 DATA 255,0,102,0,0,0,0,0,1,5,5,1,1,5,5,1 :rern 47 
560 DATA 0,0,0,0,0,102,0,255,128,160,160,128,128,160,160,128 

:rern 96 
570 DATA 0,24,60,102,255,60,24,0,0,56,108,198,214,198,108,56 

:rern 132 
580 DATA 24,60,36,255,36,36,60,24,40,129,36,18,64,10,64,17 

590 DATA 170,85,170,85,170,85,170,85,0,0,0,0,0,0,0,0 
600 DATA 0,0,0,0,0,0,0,0 
610 DATA-23,-22,-21,-1,0,1,21,22,23 

260 

: rern 41 
:rern 224 
:rem 100 
:rem 175 



RiC~~~~ I Torpedo-8 

"Torpedo-8" is a simple, yet enjoyable, air defense game for the unexpanded 
VIC. Your job, as captain of the fleet of seven bomber planes, is to destroy as 
many of the enemy ships as possible. Maneuver your planes while avoiding 
enemy fire, and shoot when you think you can land a hit. 

Use the Z and slash U) keys to move your plane to avoid the enemy 
ship fire. When you think you can make a hit, press the space bar and drop 
a bomb on a ship. When a plane is hit, it will go up in flames and quickly 
descend to the ocean. 

Torpedo-8 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

4 PRINT" {CLR} {BLK} {6 OOWN} [6 RIGHT} TORPEDO-8" : rem 190 
6 PRINT"{2 DOWN} HIT (Z) TO GO LEFT":PRINT" HIT (I) TO GO RIG 

HT":PRINT" HIT (SPACE) TO BOMB" :rem 180 
7 PRINT:PRINT" HIT ANY KEY TO START":FORO=lT0100:NEXT:RESTORE 

:rem 159 
8 POKE36879,25:P%=7:POKE650,128:U=7882 :rem 158 
9 T=0:PL%=7:DF%=166:GETD$:IFD$=""THEN9 :rem 200 
10 S=INT(RND(I)*12)+2:Z=100:GOSUBI5:GOSUBI4 :rem 30 
11 REM***CHANGE PL% TO LENGTHEN GAME**CHANGE DF% FOR DIFF. FA 

CTOR***** :rem 165 
12 GOT020 : rem 254 
13 REM****DRAW SEA***** :rem 201 
14 PRINT II {HOME} [22 DOWN} [RVS} [BLU} IJIJIJIJIJIJIJIJIJIJI [OFF} 

{BLKH HOME} II :GOSUB55 : RETURN : rem 234 
15 POKE36878,15:POKE36875,200:L=0:PRINT"{CLR}{BLK} {5 DOWN}"TA 

B(P%)"{4 SPACES}- II :rem 159 
16 POKE36876,148:PRINTTAB(P%)"{3 SPACES}*+*" :rem 112 
18 PRINTTAB(P%)"g4 P~*g4 P~" -- :rem 121 
19 PRINTTAB(P%)" ~C~K [RVS}X{OFF} JgV~":RETURN :rem 253 
20 A=7682+S:B=30720:GOSUB21:GOT032- :rem 223 
21 GETD$:IFD$=""THENRETURN :rem 108 
22 IFPEEK(197)=32THENGOSUB400:RETURN :rem 9 
27 IFP%=0THEN29 :rem 116 
28 IFD$="Z"THENP%=P%-1:GOSUB350:Z=Z-5:L=L+1:RETURN :rem 84 
29 IFP%>11THEN31 :rem 162 
30 IFD$=I/"THENP%=P%+1:GOSUB300:Z=Z-5:L=L+l:RETURN :rem 27 
31 GOSUB15:GOSUBI4:RETURN :rem 131 
32 FORQ=440T00STEP-22:C%=PEEK(A+Q) :READA%:POKEA+Q+B,0:POKEA+Q 

,A% : rem 135 
33 FORY=ITOZ:NEXTY:IFC%<>32THENGOSUB60:GOSUB190 :rem 92 
34 IFPL%=0THENQ=0:Y=Z:GOT0600 :rem 68 
35 POKEA+Q+B,I:Z=Z-5 :rem 171 
36 IFPEEK(197)<>64THENGOSUB21:Q=Q-22 :rem 175 
37 IFPEEK(197)=64ANDL>0THENGOSUB15:GOSUBI4 :rem 120 
38 IFQ<440THEN40 :rem 178 

261 



Shoot -em-ups 

39 POKEA+462,121:POKEA+462+B,0 :rem 157 
40 NEXTQ:RESTORE :rem 82 
50 GOT010 :rem 255 
54 REM****SHIP ON HATER****** : rem 69 
55 POKEA+462,121:POKEA+462+B,0:RETURN :rem 181 
59 REM***FIRE FROM PLANE***** : rem 108 
60 POKEA+Q+B,2:POKEA+Q,127:GOSUB703:RETURN :rem 119 
100 DATA46,46,46,46,126,126,126,101,101,101,116,116,117,117,9 

7,97 :rem 170 
110 DATA246,246,234,234,160,81,81,81,81,81 :rem 70 
132 POKEA+Q+B,l :rem 76 
185 REM***PLANE SHOT DOm~***** : rem 184 
190 Z=60 :rem 151 
195 GOSUB700 :rem 182 
200 FORW=QT0540STEP22 :PRINT" {HOME} {DOWN} {LEFT} {INST} ":POKE21 

8,158:POKE218,144 :rem 49 
201 GOSUB14:POKE36878,15:POKE36875,128+(W/10) :rem 35 
205 FORY=lTOZ:NEXTY:Z=-5 :rem 71 
206 POKEA+Q,104:POKEA+Q+B,7 :rem 59 
207 IFW>250THENPOKEA+Q+B,2 :rem 58 
208 IFW>350THENPOKEA+Q+B,0 :rem 58 
210 NEXTW:Q=0:POKE36876,0 :rem 244 
211 GOSUB14 :rem 121 
220 POKE36879,42:FORY=lT0250:NEXT:POKE36879,25:POKE36875,0:GO 

SUB700 : rem 49 
230 FORY=1T0150:NEXT:PL%=PL%-1:RETURN :rem 102 
290 REM***PLANE-RIGHT***** : rem 234 
300 PRINT"{CLR}{4 DOHN}"TAB(P%)"{BLK} M" :rem 121 
305 PRINTTAB(P%)"{2 SPACES}M" :rem 211 
310 PRINTTAB(P%)"{2 SPACES}Ic~MMN" :rem 38 
315 PRINTTAB(P%)" {4 SPACES} {RVS}W{OFF}M" :rem 79 
320 PRINTTAB (P%)" {5 SPACES }M" - - : rem 208 
325 PRINTTAB(P%)"{5 SPACES}Ic~M" :rem 145 
330 PRINTTAB(P%)"{7 SPACES}M" - :rem 209 
331 IFPEEK(197)=64THENGOSUB15:GOSUB14 :rem 24 
335 GOSUB14:RETURN :rem 154 
345 REM***PLANE-LEFT****** :rem 194 
350 PRINT"{CLR}{4 DOHN} "TAB (P%) " {BLK}{7 SPACES}~" :rem 127 
352 PRINTTAB(P%)"{6 SPACES}N" :rem 214 
355 PRINTTAB(P%)"{3 SPACES}MNNgV~" :rem 50 
360 PRINTTAB(P%)"{3 SPACES}N{RVS}W{OFF}" :rem 80 
365 PRINTTAB (P%)" {3 SPACES }N" - : rem 218 
3 70 PRI NTTAB (P% ) " {2 SPACES }Ngvj" : rem 148 
375 PRINTTAB(P%)" N" - :rem 219 
376 IFPEEK(197)=64THENGOSUB15:GOSUB14 :rem 33 
380 GOSUB14:RETURN :rem 154 
390 REM****BOMB ROUTINE**** : rem 22 
400 GOSUB703:J=0:M=20:K=97:FORY=0T0264STEP22 :rem 189 
401 IFPEEK(U+P%+Y)<>32ANDQ>DF%THENGOSUB500:Y=264:GOT0420 

402 POKE36877,243-(Y/9):POKE36878,15 

262 

:rem 188 
:rem 227 



403 
404 
405 
406 
407 
408 
409 
410 
411 
418 
419 
420 
450 
455 
460 
465 
470 
471 
475 
500 
505 
510 
520 
525 
530 
535 
550 
600 

IFPEEK(U+P%+Y)=121THENGOSUB450:Y=264:GOT0420 
POKEU+P%+Y,K:POKEU+P%+Y+B,7 
FORV=l TOM:NEXTV 
POKEU+P%+Y,?58:POKEU+P%+Y+B,0 
IFY>220THENK=46:GOT0418 
IFY>110THENK=116:GOT0418 
IFY>154THENK=39:GOT0418 
I FY> 66 THENK= 11 7 
IFPEEK«U+P%+Y)-22)=58THENPOKE(U+P%+Y)-22,32 
M=M-1 :NEXTY 
POKEU+P%+Y,88:POKEU+P%+Y+B,2:GOSUB700 
GOSUB703:GOSUB15:GOSUB14:RETURN 
GOSUB703:FORK=lT05 
POKEU+P%+Y,233:POKEU+P%+Y+B,2 
FORC=l T030 :NEXT 
POKEU+P%+Y,223:POKEU+P%+Y+B,7 
FORC=lT030:NEXTC,K 
POKEU+P%+Y,32:GOSUB700:Q=0 
T=T+500 : RETURN 
GOSUB703:POKEU+P%+Y,42 
FORO=lT05 
POKEU+P%+Y+B,2 
FORC=lT020:NEXT 
POKEU+P%+Y+B,7 
FORC=lT020:NEXTC,O:GOSUB700 
Q=0 : RETURN 

Shoot-ern-ups 

: rem 163 
:rem 105 

:rem 3 
:rem 134 
:rem 134 
:rem 179 
:rem 144 
:rem 119 
:rem 234 
:rem 164 
:rem 224 

:rem 9 
:rem 101 
:rem 183 
:rem 177 
:rem 188 
:rem 108 
:rem 30 
: rem 95 
:rem 35 
:rem 22 
:rem 9 

:rem 173 
:rem 20 

:rem 189 
:rem 117 

REM****END OF GAME**** :rem 84 
PRINT"{CLR} {6 DOWN} {6 RIGHT}GAME OVER":PRINT:PRINT 

:rem 242 
602 PRINT" YOU LOST 7 PLANES":PRINT:PRINT" YOU SCORED"T"PTS." 

650 
655 
660 
665 
670 
675 
680 
690 
700 
701 
702 
703 

PRINT: PRINT: PRINT: PRINT" {5 SPACES} PLAY 
PRINT:PRINT"{4 SPACES}HIT (Y) OR (N)" 
GETD$ 
IFD$="N"THENPOKE650,0:END 
IFD$="Y"THEN680 
GOT0660 
FORO=lT010:GETY$:NEXT:GOT01 
REM***SOUND EFFECT**** 
POKE36877,128 
FORO=15T00STEP-1:POKE36878,O:GETD$ 
FORR=lT040:NEXTR,O 
FORC=36874T036878:POKEC,0:NEXT:RETURN 

AGAIN?" 
:rem 238 
:rem 150 

:rem 7 
:rem 228 
:rem 205 
:rem 59 

:rem 119 
:rem 250 
:rem 223 
:rem 156 

:rem 84 
:rem 141 

: rem 91 

263 



Jim I 
Schmitz Sevicog 

So there you are, drawing another smiling face on your television screen 
with your Super Expander cartridge, impressing yet another relative. But, 
really, what can you use the Super Expander for? If you're like me, you may 
have realized that instead of using all the great built-in features of the Super 
Expander, you have ended up using it only for the extra memory. This, there
fore, became the big question: How can I utilize the full potential of the VIC 
Super Expander? 

The answer was "Sevicog," a game in which you test a new top-secret 
antimissile defense system code-named SEVICOG, which is embedded in a 
miniscule asteroid beyond the orbit of Mars. This test will measure the effec
tiveness of such a system before it is installed on Earth. 

Several features were incorporated into Sevicog to make the game more 
interesting. First, you can input the number of targets you would like to de
scend down the screen at one time. Second, as the score increases, your radi
ation cloud disperses more slowly, and the missiles reappear lower and 
lower on the screen. As all of this goes on, you will find it getting harder to 
move quickly. However, to overcome this penalty, you can hold the button 
of the joystick down as you push the joystick in the desired direction to ac
tivate a quick-move feature. Pressing the fire button alone will explode your 
radiation bomb. 

Now, before you type in the game itself, here are a few words about the 
program. For one, you obviously must use the Super Expander. Second, inte
ger variables and the period are used to represent constants and zero, respec
tively. This greatly increases the speed of the program. Finally, there is some 
memory left if you want to make your own changes. You might want to 
change the equation for the falling missiles (line 10) from a line to a parabola 
or even a trigonometric equation. Also, you can try to make an even more 
dramatic ending or add an option to allow multiple firings. 

To play the game, move your bomb under the falling missiles and press 
the fire button to explode the radiation cloud. You can also run over the fall
ing missiles to destroy them. 

Sevicog 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

1 PRINT" {CLR}HmV- MANY TARGETS?{5 SPACES}(l-20)":INPUTN%:IFN%> 
200RN%<lTHENl :rem 28 

2 GRAPHICl:COLOR.,6,1,8:N%=N%-1:DIMM(N%,1),A(N%),B(N%):X=511: 
Y=X:SC=l :rem 215 

3 FORZ=.TON%:GOSUB900:NEXT:M=6.375:N=M*2:W%=1020:V%=960 
:rem 61 

5 DRAW2,.,W%T054,987T0102,1011T0123,977T0198,1000T0300,1015TO 
333,978T0367,1001 :rem 68 

264 



Shoot-em-ups I 
6 DRAW2, 367, If3f31T04f3f3, 975T045f3,999T0511,969T0550,989T0575 ,101 

f3T0634,999T07f30,994 :rem 225 
7 DRAW2,7f3f3,994T0724,lf311T080f3,971T0880,999T0902,970T0900,1013 

9T0950,999TOlf320,969 :rem 11 
8 PAINT3,W%,W% :rem 55 
113 FORZ= .TON% :POINT.,M (Z, • ) ,M(Z, 1) :M(Z, 1 )=M(Z, 1) +M*2 :M(Z, . )=( 

M(Z,l)-B(Z»/A(Z) :rem 173 
15 J=RJOY(.):GOSUB108:IFRJOY(.».THENGOSUB100 :rem 59 
213 IFM(Z,.»W%ORM(Z,.)<.THENGOSUB90f3:M(Z,l)=. :rem 156 
25 IFM(Z,l»V%THEN97f3 :rem 211 
30 IFRDOT(M(Z,. ),M(Z,l»>2THENA=Z:GOSUB950:GOSUB900 :rem 113 
35 IFQ%=.THEN5f3 :rem 108 
413 FORA=.TON%:IFRDOT(M(A,.),M(A,l»>lTHENM(A,l)=.:GOSUB95f3:GO 

SUB900:NEXT:GOT05f3 :rem 66 
45 NEXT : rem 168 
50 POINT2,M(Z,. ),M(Z,l):NEXT:CHAR.,.,S$:GOT010 :rem 2413 
11313 POINT.,X,Y :rem 82 
101 J=RJOY(. ):X=X+«(JAND4)=4)-«JAND8)=8»*N*P:Y=Y+«(JANDl) 

=1)-«JAND2)=2»*M*P :rem 239 
1132IFJ>128THENP=P+l/(SC*.135):GOTOlf34 :rem 136 
1133 P=l/( .05*SC) :IFP>3THENP=3 :rem 158 
1134 IFX<.THENX=. :rem 216 
1135 IFY<.THENY=. :rem 219 
1136 IFX>W%THENX=W% :rem 1213 
1137 IFY>V%THENY=V% :rem 121 
108 POINT3,X,Y:IFQ%=lANDTI>SC*4THENI=I-1:GOSUB600:TI$="f3131301313 

" :rem 246 
1139 IFJ<>1280RQ%<>.THENRETURN :rem 86 
1113 SOUND.,., .,245,15:DRAWl,511,V%TOX,Y:DRAW.,511,V%TOX,Y:Y2= 

Y:GOSUB513f3 :rem 3 
III RETURN : rem 115 
51313 Y2=ABS(Y2-2f3) :FORI=lT05 :D( I)=ABS(X-INT(RND(. )*75» :DRA\l3, 

D(I),Y2TOD(I)+65,Y2 :rem 174 
5135 SOUND.,.,.,2f3f3,15-I*3:Y2=Y2+M:NEXT:Q%=1:I=6:TI$="f3f3f3f3f313": 

SOUND. , • , • , • , • : rem 175 
5113 RETURN :rem 118 
61313 Y2=Y2-M:DRAW.,D(I),Y2TOD(I)+65,Y2:IFI=lTHENQ%=. :rem 24 
6113 RETURN :rem 119 
91313 A(Z)=RND(.)*113-4.5:IFA(Z)=.THEN9f3f3 :rem 92 
9135 M(Z,.)=INT(RND(Z)*7f3f3)+3f3f3:B(Z)=M(Z,l)-M(Z,. )*A(Z):RETURN 

:rem 223 
9513 SOUND.,225,.,.,15:SC=SC+l:S$=STR$(SC-l):M(A,l)=SC*lf3:1FM( 

A,1»81313THENM(A,l)=80f3 :rem 158 
9613 SOUND.,.,.,.,.:RETURN :rem 216 
9713 M(.,l)=M(Z,1):M(.,.)=M(Z,.):A(.)=5f3 :rem 2313 
975 FORI=.T04f3:B(.)=RND(.)*813f3+113f3:S0UND.,.,129,213f3,15:Q%=Q%+ 

1:IFQ%=4THENQ%=1 :rem 69 
9813 DRAWQ%,M(.,.),M(.,l)TOB(.),A(.) :rem 613 
985 DRAW., M ( • , . ) , M ( • ,1) TOB ( • ) , A ( • ) : SOUND. , . , . , 1+ 128,15 :NEXT 

:rem 228 
9913 SOUND.,.,.,.,.:GRAPHIC4:PRINT"{CLR}SCORE: ";S$ :rem 51 

265 



Mike I 
Scharland Pilot 

You are serving as a gunner in the United States Air Force, and you're sta
tioned at the fore of a squadron of backfire bombers. Your mission is to de
stroy enemy planes (a multicolor mode ball) which appear in front of the 
backfire bombers (after all, they can only shoot backward!). You will get a 
view from the cockpit window in which you can see the enemy jet in front 
of you weaving around in the air. You must maneuver your jet so that the 
enemy plane is centered in your view, to the place where the arrows at the 
side and top of the screen converge. To shoot at the jet, you press the joy
stick fire button. 

But there is more to this than meets the eye. You must destroy the en
emy jet before you run out of fuel and plunge to the earth. Also, a common 
trick of the enemy is to try to lure you into crashing into the mountain 
peaks, so you must try to maintain altitude. You'll also crash if your altitude 
is below 100 feet. You lose height when you pull down on the joystick and 
gain it when you push up. You have an altimeter at the bottom left which is 
updated every time you destroy an enemy jet. 

I How It Works 
The play portion is a short loop which branches off to a number of sub
routines. The moving of the enemy plane is done in lines 7 and 8. First, a 
random number is chosen and the data pointer is moved that far. The num
ber that it's resting on is then added to the current position of the enemy 
fighter. Here's an outline of the subroutines: 

1000-1012 Read joystick (see Programmer's Reference Guide for details) 
2000-2009 Print game screen 
3000-3003 Firing sequence 
4000-4009 Explosion sequence and update score 
5000-5007 End of game display 
5999-6013 Screen for level input 
7000-7200 New high-score sequence 
8000-8006 Out of fuel sequence 
9000-10002 Check current altitude 

I Some Hints 
This game is difficult to get the hang of, and it may take several hours or 
even several days to get accustomed to the controls and get to the point 
where you can complete the game. You must always remember to keep com
plete control over the enemy plane by using the joystick. Always grip it 
firmly, because if you let go and the enemy jet floats off to the side of the 

266 



Shoot-em-ups 

screen, it will take quite some time to get it back to the center. Also, if you 
see the message YOU'RE HEADED FOR A MOUNTAIN!! appear at the top 
of the screen, instantly push up on the joystick, and you'll be temporarily 
safe. The faster you destroy the plane in front of you, the better your score 
will be. 

Good luck! 

Pilot 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

o PH=0:NAME$="NO ONE":G$=" {32 SPACES}" :rem 218 
1 GOSUB5999:POKE36879,184:TI$="000000":POKE36877,135:TU=0:AL= 

450:RESTORE :rem 248 
2 FORT=38444T038839:POKET,80R8:NEXT:GOSUB2000 :rem 82 
5 T=TI:X=7910:POKEX,81 :rem 89 
7 Z=INT(RND(I)*12)+I:FORM=ITOZ:READY:NEXT :rem 90 
8 DATA 0,-23,-22,0,-21,-1,0,1,21,0,22,23 :rem 100 
9 GOSUBI000:POKEX,81 :rem 208 
10 IF(TI-T»5500THEN8000 :rem 94 
11 RESTORE:GOT07 :rem 48 
1000 POKE37154,127:P=PEEK(37152)ANDI28:J0=-(P=0):POKE37154,25 

5:P=PEEK(37151) :rem 6 
1001 Jl=-«PAND8)=0):J2=-«PANDI6)=0) :J3=-«PAND4)=0) :FB=-«P 

AND32)=0) :rem 20 
1002 IFFBTHEN3000 :rem 204 
1003 IFJ0THENY=Y+l:GOTOI010 :rem 124 
1004 IFJ2THENY=Y-l:GOTOI010 :rem 129 
1005 IFJITHENY=Y+22:AL=AL-10:IFAL<100THENI0000:GOT01010 

:rem 20 
1006 IFJ3THENY=Y-22:AL=AL+10 :rem 159 
1010 IFX+Y*O>80S30RX+Y*O<7724THENY=-Y :rem 5 
1011 X=X+Y*O:POKEX-Y*O,32:POKEX,81 :rem 84 
1012 RETURN :rem 164 
2000 PRINT" {HOME} {7 DOWN} {BLU} I {LEFT} {DOWN} - {LEFT} {DOWN}-

{LEFT} {DOWN} - {LEFT} {DO\>m }JM {2 LEFT} {DO"fm} UN {2 LEFT}
{Dmm} - {LEFT} {DOWN} - {LEFTTTDOWN} - {LEFT} {DOWN} K" : rem 144 

2001 PRINT"TS SPACES}{BLK}U*I{4 SPACES}U*I":PRINT"T5 SPACES}-
{GRN}Q{BLK}-{4 SPACES1=TGRN}Q{BLK}~ :rem 93 

2002 PRINT" {5 SPACES} -*J****K*-": PRINT "TRVS }£{ 4 SPACES} -**** 
****-{6 SPACES}g*}" ~ - :rem 254 

2003 PRINT"{RVS}{5 SPACES}J**I**U**K{2 SPACESH3 Jj{2 SPACES} 
" ~ :PRINT" {RVS}{ 5 SPACES }ww -**- {9 SPACES} II ~ :GOT09000 

-- ---- :rem 49 
2004 POKE8185,160:POKE38905,0 :rem 92 
2008 PRINT" {HOME} {OFF} {BLU} {7 SPACES }J** I {LEFT} {DOWN }MN{ LEFT} 

{UP}U***K" ---- :rem 201 
2009 RETU~ :rem 171 
3000 POKE36878,15:FORAZ=1T030:NEXT:POKE36878,0:C=8108:FORA=7T 

01STEP-1:POKEC+A,77 :rem 147 

267 



Shoot -em-ups 

3001 POKEC-A,78:C=C-22:POKEC+22+A,32:POKEC+22-A,32:NEXT 
: rem 184 

3002 IFX=7954THEN4000 :rem 181 
3003 RETURN :rem 166 
4000 POKE36879,138:POKEX,32:POKEX-45,46:POKEX-22,46:POKEX-21, 

46:POKEX-2,46:POKEX-l,46 :rem 69 
4001 POKEX+l,46:POKEX+2,46:POKEX+22,46:POKEX+23,46 :rem 191 
4003 FORI=15TOlSTEP-2:POKE36878,I:FORV=lT0100:NEXT:NEXT:POKE3 

6878,0 :rem 215 
4004 SC=SC+INT ( (T/TI) * 321) +3 50*0: PRINT" {HOME} {PUR} {2 OOWN }SCO 

RE="SC::PRINTG$ :rem 157 
4005 POKEX-45,32:POKEX-22,32:POKEX-21,32:POKEX-2,32:POKEX-l,3 

2:POKEX+l,32:POKEX+2,32 :rem 250 
4006 POKEX+22,32:POKEX+23,32:TU=TU+l:IFTU>7THEN5000 :rem 83 
4007 POKE36879,184 :rem 212 
4008 X=X-22-INT(RND(1)*5)+1:GOSUB2000 :rem 80 
4009 T=TI:RETURN :rem 21 
5000 POKE36879,8:PRINT" {CLR} {2 OOWN} {CYN}OLD HIGH SCORE "PH:P 

RINT" {OOWN}BY: "NAME$ : rem 17 
5001 PRINT" {2 OOWN} {YEL} YOUR SCORE: "SC : rem 242 
5002 IFSC>PHTHEN7000 :rem 184 
5004 PRINT"{2 OOWN}{GRN}PRESS X TO PLAY AGAIN" :rem 248 
5005 GETA$ :IFA$=" "THEN5005 : rem 183 
5006 IFA$="X"THENSC=0 :GOTOI : rem 110 
5007 GOT05005 :rem 207 
5999 PRINT"{CLR}{BLU}":POKE36879,127 :rem 163 
6011Jl PRINT"{3 DOWN}**ENTER SKILL LEVEL** E21 P~" :rem 67 
6005 PRINT" {2 OOWN}{ 2 SPACES}{ RVS}l {OFF}{ 2 SPACES} EASY" :PRINT 

"{2 OOWN}{5 SPACES}OR" :rem 147 
6006 PRINT"{2 OOWN} {2 SPACES} {~VS}2{OFF} {2 SPACES}DIFFICULT" 

:rem 47 
6010 GETN$: IFN$=" "THEN6010 : rem 203 
60110=VAL(N$):IFO<10RO>2THEN5999 :rem 238 
6012 PRINT" {CLR} ":POKE36865,255:GOSUB2000:FORI=140T025STEP-l : 

POKE36865,I :rem 176 
6013 FORZS=0TOll:NEXT:NEXT:RETURN :rem 220 
7000 PH=SC:POKE36877,0 :rem 6 
7001 PRINT" {DOWN} {RED}A ": :GOSUB7200 :PRINT"NEW ": :GOSUB7200 

:rem 120 
7002 PRINT "HIGH ": :GOSUB7200 :PRINT "SCORE 11" :GOSUB7200: rem 196 
7003 INPUT"{OO\VN}{BLU}WHAT IS YOUR NAME":NAME$ :rem 142 
7004 POKE36878,0:GOT05004 :rem 162 
7200 POKE36878,15:POKE36876,200:FORE=IT050:NEXT:POKE36876,0:R 

ETURN : rem 17 
8000 POKE36877,0 :POKE36878, 15 :PRINT" {HOME} {3 OOWN} {RED} 

{2 SPACES}OUT OF FUEL1":RESTORE :rem 18 
8001 POKE36875,200:FORG=IT0300:NEXT:POKE36875,195:FORG=lT0300 

:NEXT:POKE36875,190 :rem 74 
8002 FORG=lT0300:NEXT:POKE36875,185:FORG=IT0300:NEXT:POKE3687 

5,0 :rem 172 
8003 FORSA=25TOI50:POKE36865,SA:NEXT :rero 209 

268 



Shoot-em-ups I 
8004 POKE36879,42:POKE36877,135:FORWE=15T00STEP-1:POKE36878,W 

E : rem 233 
8005 FORET=lT0100:NEXT:NEXT :rem 225 
8006 POKE36865, 25 :GOT05004 : rem 216 
9000 PRINT" {HOME} {21 OOWN} {BLK} {RVS} "AL:" {OFF} {HOME} ":GOT0200 

4 :rem 158 
10000 PRINT"{HOME}{2 OOWN}{BLK}YOU'RE HEADED FOR A{3 SPACES}M 

OUNTAINll ":FORWQ=lT0400:NEXT :rem 153 
10001 GOSUB1000 : I FAL>=HJ0 THENPRINT " {2 UP} "G$ :GOT01010 : rem 87 
10002 GOT08004 :rem 248 

269 



Rob Westphal I 
and 

AI Switzer Laser War 
"Laser War" is a simple two-player game for the unexpanded VIC. Each 
player attempts to shoot at the other player's ship. The ships shoot hori
zontally at each other. To move a ship one space vertically, press the appro
priate up or down key once (each player's keys are listed on the instruction 
screen). To move more than one space vertically, press the appropriate key 
repeatedly. If there is a laser beam close to a ship, but not able to hit the 
ship directly, the ship will become invisible until the laser is gone. The first 
player to reach a score of five is the winner. 

Laser War 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 POKE36879,27 :rem 54 
15 PRINT" (CLR}": PRINTSPC (29) : PRINT ,,{ RED} L{ CYN}A{ PUR}S {GRN}E 

{BLU}R {YEL}W{RED}A{CYN}R" :rem 140 
30 PRINTSPC(112):PRINT" (PRESS SPACE BAR)" :rem 229 
40 GETM$: IFM$=" "THEN40 : rem 3 
50 PRINT"{CLR}":PRINTSPC(27) :PRINT"INSTRUCTIONS" :rem 240 
55 PRINT"{2 OOWN}{BLU}THIS IS DESIGNED FOR{7 SPACES}TWO PLAYE 

RS n : rem 148 
60 PRINT"{OOWN}{RED}PLAYER 1{5 SPACES}{GRN}PLAYER 2" :rem 127 
65 PRINT"{RED}{OOWN}A=UP{9 SPACES}{GRN}K=UP" :rem 215 
70 PRINT" {RED}Z=OOWN{ 7 SPACES} {GRN}M=OOWN" : rem 3 
75 PRINT"{RED}X=FIRE{7 SPACES} {GRN}N=FIRE" :rem 227 
80 PRINT"{2 OOWN}{BLU}THE {PUR}X{BLU}'S IN THE MIDDLE OF THE 

{SPACE}SCREEN ARE{5 SPACES}BLOCKADES. SHOOTING" :rem 62 
85 PRINT"THEM WILL NOT HELP THESCORE OF THE GAME." :rem 217 
90 PRINT" {2 DOWN} {BLK} {2 SPACES} (PRESS SPACE BAR)" : rem 11 
100 GETM$:IFM$= .... THEN100 :rem 93 
295 CLR : rem 129 
299 A=7834:B=8031 :rem 125 
300 PRINT"{CLR}":POKE36879,8 :rem 213 
310 POKE36878,0:POKE36875,0 :rem 1 
320 POKEA,62:POKEB,60 :rem 214 
400 FORT=38884T038906:POKET,6:NEXT :rem 96 
410 POKE8170,12:POKE8171,l:POKE8172,19:POKE8173,5:POKE8174,18 

420 POKE8176,23:POKE8177,l:POKE8178,18 
430 POKE8168,27:POKE8180,29 

: rem 250 
:rem 159 

:rem 3 
530 PRINT" {HOME} {BLU} SCORE=": SC: :PRINT" {3 SPACES}SCORE=":SK 

:rem 253 
:rem 238 531 

533 
534 
545 
546 
547 

T=7998:U=7866:V=8020:W=7844 
POKEV,86:POKE38740,4:POKEW,86:POKE38564,4 
POKET,86:POKE38718,4:POKEU,86:POKE38586,4 
GETA$ 
IFA$<>"A"THEN630 
A=A-22 

270 

:rem 182 
:rem 188 
:rem 227 
:rem 90 

:rem 240 



Shoot-em-ups I 
548 IFA=7680THENA=7702 :rem 0 
549 POKEA+22,32:POKEA,62:GOT0630 :rern 124 
550 IFA$<> "Z"THEN650 :rem 112 
555 A=A+22 :rem 237 
557 IFA=8164THENA=8142 :rem 253 
558 POKE36878,15:POKE36876,209 :rem 177 
559 POKE36878,0:POKE36876,0 : rem 17 
560 POKEA-22,32:POKEA,62:GOT0530 :rem 118 
570 IFA$<>"X"THEN530 :rem 109 
573 POKE36878,10:POKE36875,209 :rem 168 
580 GOT0700 :rem 109 
630 IFA$<>"K"THEN550 : rem 95 
635 B=B-22 :rem 240 
637 IFB=7701THENB=7723 :rem 254 
640 POKEB+22,32:POKEB,60:GOT0530 :rem 115 
650 IFA$<>"M"THEN670 :rem 102 
655 B=B+22 :rem 240 
657 IFB=8185THENB=8163 :rem 6 
658 POKE36878,15:POKE36874,209 :rem 176 
'659 POKE36878,0:POKE36874,0 :rem 16 
660 POKEB-22,32:POKEB,60:GOT0530 :rem 119 
670 IFA$<>"N"THEN570 :rem 104 
673 POKE36878,10:POKE36875,209 : rem 169 
680 GOT0800 :rem III 
700 C=A :rem 88 
710 POKEC+l,67 :rem 255 
715 Z=0 :rem 100 
720 C=C+l :rem 184 
725 Z=Z+l :rem 235 
730 IFC=BTHEN766 :rem 189 
735 I FC=WTHEN300 : rem 199 
736 IFC=UTHEN300 :rem 198 
737 I FC=VTHEN300 :rem 200 
738 IFC=TTHEN300 :rem 199 
750 POKEC-2,32:POKEC,67 :rem 67 
755 IFZ=21THEN757 :rem 252 
756 GOT0720 :rem 116 
757 POKE36878,0:POKE36875,0:GOT0300 :rem 22 
762 SK=SK+l:POKEA,104:POKED+2,32:POKED+l,32 :rem 20 
764 POKE36879,13:GOT0770 :rem 130 
766 SC=SC+l:POKEB,104:POKEC-2,32:POKEC-l,32 :rem 11 
?768 POKE36879,10:GOT0770 :rem 131 
770 POKE36878,0:POKE36875,0 :rem 11 
775 POKE36877 ,220 :rem 161 
777 FORL=15T00STEP-l :rem 232 
779 POKE36878,L :rem 94 
781 FORM=lT075 :rem 81 
783 NEXTM :rem 46 
785 NEXTL :rem 47 
787 POKE36877 ,0 :rem 64 
789 POKE36878,0 :rem 67 

271 



I Shoot-em-ups 

790 IFSC=5THENPRINT" {CLR} {3 DO\m} {RED}" :PRINTSPC(4) :PRINT"PLA 
YER 1 WINS":PRINT"{BLU}":GOT0900 :rem 203 

792 IFSK=5THENPRINT" {CLR} {3 DOWN} {RED} ": PRINTSPC (4) :PRINT" 
{GRN}PLAYER 2 WINS":PRINT"{BLU}":GOT0900 :rem 244 

798 GOT0299 :rem 133 
800 D=B : rem 91 
810 POKED-1,67 :rem 3 
815 Y=0 : rem 100 
820 D=D-1 : rem 189 
825 Y=Y+1 :rem 234 
830 IFD=ATHEN762 :rem 186 
835 IFD=WTHEN300 :rem 201 
836 IFD=UTHEN300 :rem 200 
837 IFD=VTHEN300 :rem 202 
838 IFD=TTHEN300 :rem 201 
850 POKED+2,32:POKED,67 :rem 68 
855 IFY=21THEN857 :rem 253 
856 GOT0820 :rem 118 
857 POKE36878,0:POKE36875,0:GOT0300 :rem 23 
900 PRINT"{4 DOWN} DO YOU WANT TO PLAY{3 SPACES}AGAIN? 

{2 SPACES} (Y OR N)" : rem 137 
910 INPUTP$ :rem 158 
920 IFP$="Y"THENRUN : rem 156 
922 POKE36879,27 :rem 114 
925 PRINT"{CLR}" :rem 4 
930 END : rem 115 

272 



w~~~ I Challenger One 

This exciting action game for the un expanded VIC lets you shoot enemies 
and increase the number of galaxies conquered. If you miss more than 15 
percent of the enemies in your galaxy, you lose a life. 

In this game you are given two lives to shoot as many enemy ships as 
possible. You control the sights with your joystick. The sights don't actually 
move, but rather the background moves. You have three seconds to kill the 
enemy; otherwise, a new one will appear. 

Press the fire button to activate your lasers. Ten aliens will attack per 
galaxy (level). You can tell how many more you have to shoot by multiply
ing the level times ten, then subtracting the number of waves. A word of 
warning-this is a very difficult game to win. Learning to control the move
ment is difficult. 

Challenger One 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 DEFFNA(B)=INT(RND(B)*415)+7725:POKE36879,10 :rem 83 
20 FORM=0T065:READN:POKE7168+M,N:NEXT :rem 95 
30 DATAI69,128,141,19,145,169,0,133,1,133,2,169,127,141,34,14 

5,162,119,236,32,145 :rem 194 
40 DATA208,4,169,1,133,1,169,255,141,34,145,162,118,236,17,14 

5,208,4,169,22,133,1 :rem 190 
50 DATAI62,110,236,17,145,208,4,169,1,133,2,162,122,236,17,14 

5,208,4,169,22,133,2,96 :rem 76 
60 POKE36878,0:POKE36876,0:PRINT" {CLR} {YEL} {7 DOHN} {4 SPACES} 

CHALLENGER ONE" : rem 62 
70 PRINT"{2 DOWN}{4 SPACES}ANDREH{2 SPACES}HOLBER" :rem 230 
80 PRINT"{2 DOWN} {7 SPACES}LEVEL":INPUT"{10 LEFT}"~B :rem 128 
90 IFB>100RB<ITHENB=5 :rem 12 
100 LE=B : rem 161 
110 SC=0:PK=0:LI=2 :rem 21 
120 SH=0:PK=0 :rem 221 
130 EP=(30-(LE*4»:EN=LE*10:NS=0:IFEP=<0THENEP=1 :rem 46 
140 POKE36879, 10 :PRINT" {CLR}" : rem 0 
150 FORA=7702T07723:POKEA,102:POKEA+30720,7:NEXTA :rem 152 
160 FORB=8142T08163:POKEB,102:POKEB+30720,7:NEXTB :rem 155 
170 FORC=7724T08120STEP22:POKEC,102:POKEC+30720,7:NEXTC 

: rem 62 
180 FORD=7745T08141STEP22:POKED,102:POKED+30720,7:NEXTD 

190 WV=0 
200 I=INT(RND(I)*416)+7725 
210 IFPEEK(I)<>32THEN200 
220 POKEI,42:POKEI+30720,3 
230 POKE36878,6:POKE36874,INT(RND(I)*75)+150 
240 TI$="000000" 

: rem 73 
:rem 180 
:rem 127 
:rem 129 
:rem 214 
:rem 208 
:rem 248 

273 



Shoot -em-ups 

250 Cl=INT(RND(1)*6)+1 :rem 166 
260 WV=WV+l :rem 139 
270 GOSUB900:GOSUB800:C2=INT(RND(1)*6)+1 :rem 78 
280 PRINT" {HOME} {DOWN} {RIGHT} {RED} {RVS } GALAXY" ~LE: PRINT" 

{HOME} {DOWN} {l4 RIGHT} {RED} {RVS}WAVE" ~WV :rem 122 
290 PRINT"{HOME}{21 DOWN}{RIGHT}{RED}{RVS}SCORE"~SC :rem 124 
300 PRINT" {HOME} {RED} {21 DOWN} {13 RIGHT} {RVS} LIVES" ~ LI 

:rem 214 
310 PRINT"{YEL}{HOME}{10 DOWNH+H7 SPACES}O{4 SPACES}P":PRIN 

T"{YEL} {HOME} {l2 OOWNH+H7 SPACES}L{4 SPACES}@" :rem 185 
320 SYS7168 - :rem 106 
330 QP=INT(RND(1)*4)+1 :rem 208 
340 IFQP=lTHENDE=1:GOT0380 :rem 105 
350 IFQP=2THENDE=22:GOT0380 :rem 158 
360 IFQP=3THENDE=-1:GOT0380 :rem 154 
370 IFQP=4THENDE=-22:GOT0380 :rem 207 
380 IFPEEK(1)=lTHENED=1:GOT0420 :rem 110 
390 IFPEEK(1)=22THENED=-22:GOT0420 :rem 2 
400 IFPEEK(2)=lTHENED=-1:GOT0420 :rem 149 
410 IFPEEK(2)=22THENED=22 :rem 198 
420 ED=ED+DE : rem 153 
440 I=I+ED:IFPEEK(I)=1020RI=>81410RI=<7724THENI=I-ED:GOT0470 

:rem 159 
450 POKEI-ED,32:POKEI-ED+30720,0 :rem 67 
460 POKEI+30720,Cl:POKEI,42 :rem 29 
470 IFI=>7909ANDI=<7956ANDPEEK(37137)<95THEN490 :rem 251 
480 GOT0540 :rem 110 
490 IFI=>7909ANDI=<7912THEN530 :rem 248 
500 IFI=>7931ANDI=< 7934THEN530 : rem 239 
510 IFI=>7953ANDI=<7956THEN530 :rem 248 
520 GOT0540 :rem 105 
530 GOSUB710:GOSUB620:SC=SC+EP:SH=SH+l:POKEI+30720,3:FORD=ITO 

150:NEXT:POKEI,32 :rem 110 
535 POKEI+30720,0 :rem 152 
540 IFWV=ENTHEN560 :rem III 
550 GOT0600 : rem 105 
560 PK=INT«SH*100)/WV):IFPK=>85THENLE=LE+l:GOSUB690:GOT0120 

:rem 199 
570 LI=LI-l:LE=LE:WV=0 :rem 78 
580 IFLI=<0THENGOSUB660:GOT060 :rem 142 
590 IFLI=>lTHENGOSUB690:FORDI=lT0100:NEXT:GOT0120 :rem 139 
600 IFTI$=>"000003"THENPOKEI,32:POKEI+30720,0:GOT0200 :rem 58 
610 GOT0320 :rem 101 
620 POKE36878,10 :rem 100 
630 FORFD=254T0128STEP-4:POKE36876,FD:NEXT :rem 99 
640 POKE36878,0:POKE36876,0 :rem 8 
650 RETURN : rem 123 
660 PRINT"{HOME}{8 DOWN}{6 RIGHT}{YEL}GAME OVER" :rem 170 
680 FORTG=lT0500:POKE36878,10:POKE36876,200:NEXTTG:GOT060 

:rem 238 

274 



Shoot-em-ups 

69121 PRINT"{HOME}{9 OOWN}{7 RIGHT}{YEL}LEVEL"~LE:FORG=1T01121121121: 
NEXT : rem 124 

7121121 PRINT"{CLR}":RETURN :rem 21 
71121 FORZ=8121T07953STEP-21 :rem 41 
72121 POKEZ+21,32:POKEZ+312172121,3:POKEZ+3121741,I2I:POKEZ,78:NEXTZ 

:rem 4 
73121 POKEZ+21,32:POKEZ+312172121,I2I:POKE8142,11212:POKE8142+312172121,7 

:rem 65 
74121 FORJ=814I21T07956STEP-23 :rem 34 
75121 POKEJ+23,32:POKEJ+312172121,3:POKEJ+3121743,I2I:POKEJ,77:NEXTJ 

:rem 186 
76121 POKEJ+23,32:POKEJ+312172121,12I :rem 11219 
77121 POKE8163,11212 :rem 94 
78121 POKE8163+312172121,7 :rem 42 
79121 RETURN :rem 128 
8121121 S1=FNA(1):GH=Sl:GOSUB87121 :rem 147 
81121 S2=FNA(1) :GH=S2:GOSUB87121 :rem 15121 
82121 S3=FNA(1):GH=S3:GOSUB87121 :rem 153 
83121 S4=FNA(1):GH=S4:GOSUB87121 :rem 156 
84121 S5=FNA(1) :GH=S5:GOSUB87121 :rem 159 
85121 S6=FNA(1):GH=S6:GOSUB870 :rem 162 
86121 S7=FNA( 1) :GH=S7 :rem 76 
87121 IFPEEK(GH)=11212THENRETURN :rem 18 
88121 POKEGH,46:POKEGH+312172121,C2 :rem 18121 
89121 RETURN :rem 129 
9121121 SA=312172121 :rem 11212 
91121 HG=S1 :GOSUB98121 :rem 69 
92121 HG=S2 : GOSUB98121 :rem 71 
93121 ffi=S3 :GOSUB98121 :rem 73 
94121 HG=S4:GOSUB98121 :rem 75 
95121 HG=S5 :GOSUB98121 :rem 77 
96121 HG=S6 :GOSUB98121 :rem 79 
97121 HG=S7 :rem 246 
98121 IFPEEK(HG)=11212THENRETURN :rem 2121 
99121 POKEHG,32:POKEHG+SA,I2I:RETURN :rem 3121 

275 





Chapter 
Nine 

--------

Adventures 





M~~~~ I Space Mission 
Earth has been engaged in a lengthy war with the aliens. You have been 
charged with patrolling a quadrant of space that contains 150 sectors. As you 
move from one sector to another, you may find either an empty sector, one 
which contains either a photon torpedo or a fuel module, one which contains 
one of the above objects and an alien warship, or one which contains only a 
warship. 

When you first enter a new sector, you will have three options. The first 
is to move to another sector. The second is to take aboard the photon tor
pedo or fuel module, if any. The third is to engage the alien warship in battle. 
If you have encountered the alien for the third time since your last battle, 
you will have no choice but to fight. What object or objects, if any, are in a 
given sector is determined at runtime. 

I Entering the Program 
Although "Space Mission" will run on an unexpanded VIC, it does require at 
least 8K expansion memory to enter. First, type in Program 1 with the 
expansion memory in place, and save it using the filename SPACE LOADER. 
Program 1 is a BASIC loader program that will write the machine language 
program to disk using the filename SPACE MISSION. Tape users should 
change the ,8,0 in line 50 to ,1,0. 

Once you have saved Program 1, enter the following line in direct mode: 
POKE 44,30:POKE 7680,O:NEW 

Now load Program 1 and run it. The program will take about a minute 
to POKE the machine language program into memory and save it to disk or 
tape. If you have made an error, the program will tell you. Correct the data 
and resave the program and run it again. If the program runs successfully, 
you will have the machine language on tape or disk under the filename 
SPACE MISSION. 

From now on, to play Space Mission, simply load it into an unexpanded 
VIC using LOAD"SPACE MISSION",8,I for disk, or LOAD"SPACE MIS
SION",I,I for tape, and type SYS4558. 

I Program Operation 
Upon initialization, you will be placed in sector 1 with a score of 5000. Your 
score is displayed on the first line at the extreme left. Your current sector 
number is the next number in the line, and the last number is the current 
number of alien warships. The number of alien warships is chosen ran
domly, but will be in the neighborhood of 75. The rest of the screen will be 

279 



Adventures 

filled with stars and any object(s) that may be in the sector. The star pattern 
will make an appropriate shift as you move about the quadrant. 

Here is a complete list of the program commands and an explanation of 
how to use each one: 

Movement is accomplished with keys 0-5. Keys 1-4 will move you for
ward from zero to four sectors. Just which key will do what depends on the 
sector you are in at the time. This is chosen at random on initialization, but 
remains constant for each sector for the run of the current game. Key 5 will 
move you backward from zero to four sectors. Again, just which it will do is 
chosen at random upon initialization for each sector and remains constant for 
each sector for the run of the current game. Backward movement from the 
first four sectors is never allowed. Pressing the 0 key will move you to a new 
sector chosen at random at that time. 

To those of you who are new to adventure games, this is the time to 
mention the necessity of making a travel map to keep track of where your 
key choices will take you. 

One last thing to mention on this subject is that forward movement be
yond sector 150 will wrap around. For example, three forward from 149 will 
land you in sector 2. 

Taking. Pressing the T key will take the photon torpedo or fuel module, 
if any, in the sector aboard your vessel and increase your score. An attempt 
to take a nonexistent object will result in an error message at the bottom of 
the screen, and the program will wait for valid input. 

Fighting. The F key will engage you in battle with the alien warship. 
There are only two possible outcomes: Either you will destroy it or you will 
fail to do so. In this game you never get killed-unlike in most adventure 
games. Attempting to fight a nonexistent alien will result in an error mes
sage, and the program will wait for valid input. 

Taking an object will remove it permanently from that sector for the rest 
of the game. The same goes for destroying an alien. 

These are the only commands necessary to play the game, but here are 
two more that you might find convenient. 

Quitting. If you are disgusted with your performance, you can 
reinitialize the program and start over by pressing the Q key. When you 
press Q, a prompt asks if you really want to do this just in case you pressed 
the key by mistake or want to change your mind. 

Exiting. If you want to stop playing before the game is over and don't 
wish to resume it at a later time, you can exit the program and return to 
BASIC by pressing the X key. Once again, a prompt will ask you if you 
really mean it. 

Before going on, let me remind you that if you encounter an alien war
ship for the third time since your last engagement, you must fight and there-

280 



Adventures I 
fore only the F key will work. A message at the bottom of the screen informs 
you of this. 

I Scoring 
Space Mission uses the following scoring: 

Moving to a new sector - 1 
Fighting and winning + 100 
Fighting and losing - 25 
Taking a photon torpedo + 25 
Taking a fuel module + 50 

I Strategy 
The object of the game is to destroy all the alien warships while at the same 
time getting the highest score you can. When you fight or take an object, you 
are automatically moved to the next sector without the one-point penalty. 
After fighting, you can determine if you won or lost by noting the change in 
your score andlor the number of aliens. When all the aliens have been de
stroyed, the prompt line will ask you if you want a new game. An N re
sponse will exit you to BASIC. 

In determining when to fight, you might want to consider that the out
come is determined by chance, but the odds will favor you when your score 
is above 5000 and favor the alien when below. 

Space Mission 
For mistake-proof program elltry, be sure to use 'The Automatic Proofreader," Appelldix C. 

1117 PRINT"{CLR}PLEASE WAIT ... ":1=4558 :rem 212 
2117 READ A:IF A=256 THEN 4117 :rem 54 
3117 POKE I,A:I=I+1:C=C+~:GOTO 2117 :rem 235 
4117 IFC<>181780THENPRINT"TYPING ERROR IN DATA":STOP :rem 127 
50 SYS57809"0:SPACE MISSION",8,0:REM CHANGE TO ,1,O FOR TAPE 

:rem 158 
60 POKE193,206:POKE194,17:POKE174,58:POKE175,25:SYS63109 

1117117 
11117 
12117 
13117 
14117 
15117 
16117 
17117 
18117 
19117 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

160,154,56,165,1,101,4,101,5,133,O 
162,4,181,0,149,1,21172,16,249,201,0 
144,234,201,5,176,230,153,189,25,136,208 
224,234,234,234,234,234,234,234,234,234,234 
234,234,234,234,234,234,169,8,141,15,144 
169,147,32,210,255,169,136,141,35,25,169 
19,141,36,25,169,1,141,37,25,169,O 
141,38,25,141,39,25,160,150,56,165,1 
101,4,11171,5,133,0,162,4,181,0,149 
1,202,16,249,201,167,176,45,201,140,144 

:rem 4 
:rem 32 
:rem 39 

:rem 104 
:rem 248 
:rem 11176 
:rem 119 
:rem 65 

:rem 160 
:rem 244 

:rem 48 

281 



I Adventures 

2121121 DATA 4,162,1,176,39,21211,115,144,7,162,2 :rem 49 

21121 DATA 238,39,25,176,28,21211,25,144,7,162,3 :rem.115 
22121 DATA 238,39,25,176,17,21211,12,144,7,162,4 :rem 111 

23121 DATA 238,39,25,176,6,162,5,144,2,162,121 :rem 13 
24121 DATA 138,153,39,25,136,21218,18121,169,147,32,21121 :rem 113 
25121 DATA 255,162,15,169,31,133,2,189,4121,24,24 :rem 163 

26121 DATA 11219,37,25,21211,228,21218,2,169,227,133,1 :rem 211 
27121 DATA 169,46,145,1,21212,21218,234,162,15,198,2 :rem 218 
28121 DATA 189,4121,24,24,11219,37,25,133,1,169,46 :rem 123 
29121 DATA 145,1,21212,21218,24121,169,25,72,169,28,72 :rem 223 
3121121 DATA 169,121,72,173,37,25,72,32,232,22,173 :rem 11121 
31121 DATA 28,25,133,121,169,1121,133,1,133,3,32 :rem 246 

32121 DATA 146,23,169,25,72,169,28,72,169,121,72 :rem 131 
33121 DATA 173,39,25,72,32,232,22,173,28,25,133 : rem 162 
34121 DATA 121,169,16,133,1,133,3,32,146,23,169 :rem 55 

35121 DATA 25,72,169,28,72,173,36,25,72,173,35 :rem 132 
36121 DATA 25,72,32,232,22,173,28,25,133,121,169 :rem 11121 
37121 DATA 1,133,1,133,3,32,146,23,172,37,25 :rem 255 
38121 DATA 185,39,25,21211,121,24121,49,21211,1,21218,6 :rem 56 
39121 DATA 32,191,23,76,58,19,21211,2,21218,9,32 :rem 2121 
4121121 DATA 191,23,32,225,23,76,58,19,21211,3,21218 :rem 11219 
41121 DATA 6,32,225,23,76,58,19,21211,4,21218,9 :rem 222 
42121 DATA 32,225,23,32,6,24,76,58,19,32,6 :rem 171 
43121 DATA 24,173,39,25,21211,121,21218,3,76,61,21 :rem 4 
44121 DATA 173,38,25,21211,3,21218,23,162,11,169,162 :rem 21218 
45121 DATA 133,121,169,24,133,1,32,174,23,32,228 :rem 11213 
46121 DATA 255,21211,7121,21218,249,76,9,22,32,228,255 : rem 226 
47121 DATA 162,83,21218,3,76,23,2121,162,76,21218,3 :rem 69 
48121 DATA 76,129,2121,21211,81,21218,3,76,239,2121,21211 :rem 162 
49121 DATA 88,21218,3,76,23,21,21211,84,21218,3,76 :rem 26 
5121121 DATA 89,21,21211,7121,21218,3,76,9,22,21211,48 :rem 11 
51121 DATA 21218,33,56,165,1,11211,4,11211,5,133,121 :rem 244 
52121 DATA 162,4,181,121,149,1,21212,16,249,21211,121 :rem 44 
53121 DATA 144,234,21211,151,176,23121,21215,37,25,21218,74 :rem 11212 
54121 DATA 24121,174,21211,49,21218,2,24121,45,21211,5121,21218 :rem 25121 
55121 DATA 2,24121,39,21211,51,21218,2,24121,33,21211,52 : rem 91 
56121 DATA 21218,2,24121,27,21211,53,24121,2,21218,144,174 :rem 21212 
57121 DATA 37,25,224,6,176,2,144,135,189,189,25 :rem 186 
58121 DATA 133,121,138,56,229,121,76,252,19,56,233 :rem 125 
59121 DATA 48,24,11219,37,25,17121,189,189,25,24,11219 : rem 24121 
6121121 DATA 37,25,21211,151,144,2,233,15121,141,37,25 :rem 195 
61121 DATA 173,35,25,56,233,1,141,35,25,173,36 :rem 112 
6213 DATA 25,233,121,141,36,25,76,111,18,234,234 :rem 154 
63121 DATA 234,234,162,12,169,173,133,121,169,24,133 :rem 56 
64121 DATA 1,32,174,23,32,228,255,21211,89,21218,2 :rem 112 
65121 DATA 24121,17,21211,78,21218,243,162,11,169,32,157 :rem 61 
66121 DATA 228,31,21212,16,25121,76,98,19,169,147,32 :rem 233 
67121 DATA 21121,255,169,27,141,15,144,174,37,25,189 :rem 75 
68121 DATA 39,25,21211,2,21218,2,24121,1121,21211,3,21218 :rem 43 
69121 DATA 2,24121,4,21211,4,21218,3,21216,38,25,169 :rem 11 
7121121 DATA 1,162,1,16121,255,32,186,255,169,121,32 :rem 11218 

282 



Adventures I 
710 DATA 189,255,169,35,133,0,169,25,133,1,162 :rem 223 
720 DATA 88,160,26,169,0,32,216,255,0,162,12 : rem 112 
730 DATA 169,185,133,0,169,24,133,1,32,174,23 :rem 165 
740 DATA 32,228,255,201,89,208,2,240,17,201,78 :rem 218 
750 DATA 208,243,162,11,169,32,157,228,31,202,16 :rem 57 
760 DATA 250,76,98,19,169,147,32,210,255,169,27 :rem 39 
770 DATA 141,15,144,169,1,162,1,160,255,32,186 :rem 215 
780 DATA 255,169,0,32,189,255,169,0,162,255,160 :rem 28 
790 DATA 255,32,213,255,169,8,141,15,144,76,111 :rem 18 
800 DATA 18,234,234,234,234,234,234,234,234,234,234 : rem 205 
810 DATA 234,234,234,234,234,234,234,234,234,234,234 :rem 254 
820 DATA 234,234,234,234,234,234,234,234,234,162,12 : rem 201 
830 DATA 169,197,133,0,169,24,133,1,32,174,23 :rem 169 
840 DATA 32,228,255,201,78,208,13,162,12,169,32 :rem 12 
850 DATA 157,228,31,202,16,250,76,98,19,201,89 :rem 234 
860 DATA 208,232,76,206,17,162,12,169,209,133,0 :rem 12 
870 DATA 169,24,133,1,32,174,23,32,228,255,201 :rem 213 
880 DATA 78,208,13,162,12,169,32,157,228,31,202 :rem 17 
890 DATA 16,250,76,98,19,201,89,208,232,0,162 :rem 183 
900 DATA 16,169,221,133,0,169,24,133,1,32,174 :rem 157 
910 DATA 23,32,228,255,201,78,208,1,0,201,89 :rem 111 
920 DATA 208,244,76,206,17,172,37,25,185,39,25 :rem 234 
930 DATA 201,1,208,23,169,0,32,223,21,238,37 :rem 103 
940 DATA 25,173,37,25,201,151,208,5,169,1,141 :rem 162 
950 DATA 37,25,76,111,18,201,2,208,26,169,3 :rem 68 
960 DATA 32,223,21,238,37,25,173,37,25,201,151 :rem 212 
970 DATA 208,5,169,1,141,37,25,234,234,234,76 :rem 177 
980 DATA 111,18,201,4,208,24,169,3,32,244,21 :rem 107 
990 DATA 238,37,25,173,37,25,201,151,2108,5,169 :rem 231 
1000 DATA 1,141,37,25,234,76,111,18,201,5,208 :rem 143 
1010 DATA 23,169,0,32,244,21,238,37,25,173,37 :rem 158 
1020 DATA 25,201,151,208,5,169,1,141,37,25,76 :rem 154 
1030 DATA 111,18,162,20,169,237,133,10,169,24,133 :rem 45 
1040 DATA 1,32,174,23,76,98,19,153,39,25,173 :rem 125 
1050 DATA 35,25,24,105,25,141,35,25,173,36,25 :rem 154 
1060 DATA 105,0,141,36,25,96,153,39,25,173,35 :rem 163 
1070 DATA 25,24,105,50,141,35,25,173,36,25,105 :rem 200 
1080 DATA 0,141,36,25,96,172,37,25,185,39,25 :rem 124 
1090 DATA 201,0,240,10,201,1,240,6,201,5,240 :rem 68 
1100 DATA 2,208,16,162,20,169,1,133,0,169,25 :rem 97 
1110 DATA 133,1,32,174,23,76,98,19,56,165,1 :rem 67 
1120 DATA 101,4,101,5,133,0,162,4,181,0,149 :rem 31 
1130 DATA 1,202,16,249,201,0,176,2,144,232,201 :rem 184 
1140 DATA 8,144,2,176,226,133,0,169,50,205,36 :rem 159 
1150 DATA 25,240,4,16,17,48,23,169,0,205,35 : rem 57 
1160 DATA 25,48,16,165,0,201,4,144,16,176,54 :rem 110 
1170 DATA 165,0,201,5,144,8,176,46,165,0,201 :rem 103 
1180 DATA 5,144,40,173,35,25,56,233,25,141,35 :rem 1610 
1190 DATA 25,173,36,25,233,0,141,36,25,169,0 :rem 109 
1200 DATA 141,38,25,238,37,25,173,37,25,201,151 : rem 1 
1210 DATA 208,5,169,1,141,37,25,76,111,18,173 :rem 161 

283 



I Adventures 

1220 DATA 35,25,24,105,100,141,35,25,173,36,25 :rem 195 
1230 DATA 105,0,141,36,25,185,39,25,201,2,208 :rem 148 
1240 DATA 8,169,1,153,39,25,76,206,22,201,3 :rem 61 
1250 DATA 208,8,169,0,153,39,25,76,206,22,169 :rem 177 
1260 DATA 5,153,39,25,206,39,25,169,0,141,38 :rem 120 
1270 DATA 25,238,37,25,173,37,25,201,151,208,5 :rem 214 
1280 DATA 169,1,141,37,25,76,111,18,104,141,21 :rem 204 
1290 DATA 25,104,141,22,25,104,141,23,25,104,141 :rem 29 
1300 DATA 24,25,141,25,25,16,17,169,0,56,237 :rem 109 
1310 DATA 23,25,141,23,25,169,0,237,24,25,141 : rem 148 
1320 DATA 24,25,104,133,0,104,133,1,169,0,160 :rem 133 
1330 DATA 0,145,0,169,0,141,26,25,141,27,25 :rem 46 
1340 DATA 162,16,24,46,23,25,46,24,25,46,26 :rem 63 
1350 DATA 25,46,27,25,56,173,26,25,233,10,168 :rem 169 
1360 DATA 173,27,25,233,0,144,6,140,26,25,141 :rem 152 
1370 DATA 27,25,202,208,221,46,23,25,46,24,25 :rem 157 
1380 DATA 173,26,25,24,105,48,32,114,23,173,23 :rem 208 
1390 DATA 25,13,24,25,208,187,173,25,25,16,5 :rem 118 
1400 DATA 169,45,32,114,23,173,22,25,72,173,21 : rem 205 
1410 DATA 25,72,96,72,160,0,177,0,168,240,9 :rem 68 
1420 DATA 177,0,200,145,0,136,136,208,247,104,160 :rem 91 
1430 DATA 1,145,0,160,0,177,0,24,105,1,145 : rem 242 
1440 DATA 0,96,169,30,133,2,169,150,133,4,162 :rem 160 
1450 DATA 1,160,0,189,28,25,145,1,169,5,145 :rem 65 
1460 DATA 3,200,232,198,0,208,241,96,160,0,177 :rem 209 
1470 DATA 0,153,228,31,169,5,153,228,151,200,202 :rem 46 
1480 DATA 208,242,96,162,24,189,55,24,133,1,202 :rem 13 
1490 DATA 189,55,24,133,0,169,91,160,0,145,0 :rem 116 
1500 DATA 165,1,24,105,120,133,1,169,5,145,0 : rem 91 
1510 DATA 202,208,225,96,162,42,189,119,24,133,1 :rem 57 
1520 DATA 202,189,119,24,133,0,169,91,160,0,145 :rem 3 
1530 DATA 0,165,1,24,105,120,133,1,169,5,145 :rem 94 
1540 DATA 0,202,208,225,238,38,25,96,162,40,189 :rem 16 
1550 DATA 79,24,133,1,202,189,79,24,133,0,169 :rem 174 
1560 DATA 91,160,0,145,0,165,1,24,105,120,133 : rem 140 
1570 DATA 1,169,5,145,0,202,208,225,96,1,12 :rem 57 
1580 DATA 31,22,47,60,68,86,111,114,130,154,158 :rem 10 
1590 DATA 176,182,211,186,30,189,30,209,30,210,30 :rem 105 
1600 DATA 230,30,231,30,232,30,233,30,253,30,254 :rem 23 
1610 DATA 30,18,31,21,31,171,30,192,30,193,30 :rem 140 
1620 DATA 194,30,214,30,215,30,216,30,236,30,237 :rem 39 
1630 DATA 30,238,30,2,31,3,31,4,31,24,31 :rem 142 
1640 DATA 25,31,26,31,46,31,47,31,48,31,69 :rem 16 
1650 DATA 31,136,30,138,30,158,30,160,30,180,30 :rem 245 
1660 DATA 181,30,182,30,202,30,203,30,204,30,223 :rem 25 
1670 DATA 30,224,30,225,30,226,30,227,30,245,30 :rem 243 
1680 DATA 249,30,11,31,15,31,33,31,37,31,160 :rem 98 
1690 DATA 13,21,19,20,32,6,9,7,8,20,160 :rem 113 
1700 DATA 19,1,22,5,63,32,40,25,47,14,41 :rem 156 
1710 DATA 160,12,15,1,4,63,32,40,25,47,14 :rem 201 
1720 DATA 41,160,17,21,9,20,63,32,40,25,47 :rem 2 

284 



Adventures 

1730 DATA 14,41,160,5,24,9,20,63,32,40,25 :rem 205 
1740 DATA 47,14,41,160,14,5,23,32,7,1,13 :rem 154 
1750 DATA 5,63,32,40,25,47,14,41,160,14,15 :rem 4 
1760 DATA 32,15,2,10,5,3,20,46,46,46,23 :rem 107 
1770 DATA 1,9,20,9,14,7,160,14,15,32,1 :rem 58 
1780 DATA 12,9,5,14,46,46,46,23,1,9,20 :rem 71 
1790 DATA 9,14,7,32,0,0,0,0,0,0,0 : rem 45 
1800 DATA 0,0,0,0,0,0,0,0,0,0,0 :rem 171 
1810 DATA 0,0,0,0,0,0,0,0,0,0,0 :rem 172 
1820 DATA 0,0,0,0,0,0,0,0,256 :rem 98 

285 



R~~~~~ I Dungeon Escape 

It's a mild spring day. The world is bursting with life and new beginnings. 
You've set out into the world to seek your fame and fortune, questing for 
gold, eager for battle with the forces of evil. But these are the latter times of 
the days of sorcery. The dragons are becoming extinct; the dungeons of leg
end have long been ransacked. Alchemy and adventure are being discarded 
for modern ways. It seems that adventurers like yourself have no place in 
this new world. The glorious legends are fading, crumbling like ancient 
parchment. 

Yet 20 days ago, while passing through the town of Irstwile, you heard 
the talk in taverns of a Secret Place, recently sought by another traveler, a 
traveler never to return. You eagerly pressed for details, hoping that this is 
the way to your quest. The townsfolk couldn't tell you much or were unwill
ing to reveal what they really knew. By plying with drink and gold, you 
found some who told you of the ancient ruins of a once-great castle, occu
pied long ago by a savage ruler. They tell of the Dungeon, a vast under
ground labyrinth, constructed by the king to test the mettle of his Dark 
Knights. More, they would not say. The entire area within 20 miles of the 
Dungeon has been shunned for more than a century. Only the foolhardy 
dare to speak of it, let alone wish to find it. Unfortunately, nothing they 
could say would discourage you. 

After more than a fortnight of travel, you come upon the jangled mass 
of stones, blackened and glossy as if scorched by unimaginable heat. Indeed, 
much time has passed since the evil castle once reached into the sky, for the 
area has been reclaimed by bush and wildflowers. It looks disappointingly 
harmless. As you clamber over the rocks, though, you notice a pile of fresh
cut rock, chipped and piled at the side of a dark, downward passage. Your 
excitement mounts, as the sky begins to roil with the towering thunderheads 
of a brewing storm. You descend into the darkness, sword in hand, and fi
nally come upon a massive wooden door. You cannot find a way to open the 
door, and in your eagerness begin to flail at it with your sword. But this is 
no ordinary wood. Your sword breaks with the first blow, shattering into 
useless shards. Then the door opens, steaming with dank and horrible odors. 
Sword or no, you've come too far to turn back now. You enter the Dungeon, 
and the door slams behind you. Nothing you do will budge the giant door. 
You're trapped. 

286 

You light a torch and see before you a cryptic message: 

In your world you find no rest; 
Your blood is hot for glorious quest. 
You're finished now, you foolish mortal 
Without the keys to crack this portal. 



Adventures 

Your mind is filled with fear as you realize what you've got yourself 
into. You then notice three small notches in the enormous door. If only you 
can find the keys to the door, you can escape to the safe world outside. This 
Dungeon is no place for gold and glory. It's a wicked trap that can be your 
crypt. Your only hope is to venture forth, down into the heart of the earth. 
With no sword, no food, and fading hope, you walk along the passageways, 
seeking the keys you need to escape the deadly Dungeon. And you haven't 
seen the worst yet. Some doors are locked, requiring you to bash at them, 
draining your precious, waning strength. If you can enter a room, you find it 
contains a chest. You never know if you should open a chest, for some are 
empty, while others spew forth noxious gases that weaken you further. But 
some contain food and drink to replenish you. Some contain a precious key. 
It's not going to be easy. Many rooms are guarded by fierce monsters, mu
tated creatures fashioned from dark, ancient magic. There is a sword some
where within the Dungeon, but without it you don't dare fight these beasts. 
And fight you must, if you hope to find the keys. Good luck, adventurer. 
This quest of yours may be your doom. 

I Playing Dungeon Escape 
It somehow seems less deadly from behind your TV screen. Move the ball 
representing your alter ego with a joystick plugged into the VIC controller 
port. The game requires no expansion memory; it runs on a 5K unexpanded 
VIC. After you run the game, the complete Dungeon appears. Move through 
the Dungeon and upward against a door to try to enter a room. Conserve 
your strength at all costs. Simply opening the door and entering a room costs 
you two strength points. You start out with a hundred points of strength. If 
the strength falls at or below zero, you surely know what happens to your 
desperate adventurer. 

You cannot leave the Dungeon through the top of the screen until 
you've acquired at least three keys. Some doors are locked, but if you try 
repeatedly, you can open them, at a cost of five strength points. Chests filled 
with poisonous gases sap ten points of your strength. If you can find a chest 
with food and drink, six points are added to your strength. Somewhere, 
you'll find a sword with which you can face the monsters guarding some of 
the rooms. Fighting not only drains your energy, but it can also kill you, so 
you're allowed to retreat when you get too tired. You can press the S key at 
any time to get a status report of your remaining strength, whether or not 
you have the sword, the number of keys found, time elapsed, monsters 
killed, and number of times you've retreated from a fight or locked door. 
Don't use the status report after you've entered a room, or the chest will 
vanish. You can use the status indications to play competively with your 

287 



Adventures 

friends. Even if you don't find the keys, you can use time elapsed, monsters 
killed, and number of retreats to compare your ability. 

Escaping from the Dungeon may seem impossible, but you do have just 
enough strength to find the keys. When you find all three keys, exit your 
persona through the top of the vertical passageway to complete the Dun
geon. Again, we wish you luck. You'll need it. 

Dungeon Escape 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

o PRINT" {CLR}" :DIMR( 24) :G=l :DEFFNB (B )=INT (RND( 1) * 10) +1 
:rem 216 

1 POKE36879,8:N=7801:S1=36874:S2=Sl+1:S3=Sl+2:S4=Sl+3:V=Sl+4: 
SP=100:TI$="000000" :rem 2 

2 POKE36881, 255 :CA=0 :W=160 :D=121 :C=7724 :PRINT" {CLR}" :GOSUB4:G 
OSUB9 : rem 31 

3 C=38444:CA=0:W=2:D=6:GOSUB4:GOSUB9:GOT010 :rem 139 
4 FORC=CTOC+9:POKEC,W:NEXT:C=C+2:FORC=CTOC+9:POKEC,W:NEXT 

:rem 0 
5 FORI=lT02:FORC=CTOC+21STEP3:POKEC,W:NEXT:C=C-2:NEXTI:rem 53 
6 FORC=CTOC+21:POKEC,\I:NEXT:C=C-20:FORC=CTOC+19:POKEC,D:C=C+2 

:NEXT :rem 214 
7 POKEC-12,32:C=C-l:POKEC,W:C=C+21:POKEC,W:C=C+l:CA=CA+l:IFCA 

=4THENRETURN :rem 15 
8 GOT04 : rem 165 
9 FORC=CTOC+22:POKEC,W:NEXT:RETURN :rem 26 
10 POKE7734,120:POKE7735,120:POKE38454,2:POKE38455,2 :rem 193 
11 FORI=lTOG:POKER(I),32:NEXT:POKE36881,24 :rem 78 
12 GOSUB95 :GETA$: IFA$="S "THENGOSUB25 :GOT02 : rem 141 
13 POKE37154,127:A=(PEEK(37137)AND28)OR(PEEK(37152)AND128):A= 

ABS«A-100)/4)-7 :rem 236 
14 ONAGOSUB16,17,15"16,17,19,,,,18,17,16:POKE37154,255:GOTOI 

2 : rem 132 
15 F=N:N=N-l:GOT020 :rem 125 
16 F=N:N=N+22:GOT020 :rem 175 
17 F=N:N=N-22:GOT020 :rem 178 
18 F=N:N=N+l:GOT020 :rem 126 
19 RETURN :rem 74 
20 IFPEEK(N)=160THENN=F :rem 137 
21 IFPEEK(N)=126THENGOSUB43 : rem 162 
22 IFPEEK(N)=120THENGOSUB50 :rem 155 
23 IFPEEK(N)=121THENGOSUB33:IFF<>NTHENGOSUB39 :rem 144 
24 GOSUB82:RETURN :rem 106 
25 PRINT"{CLR}{5 SPACES}***STATUS***";SPC(49)"STRENGTH:"SP 

26 IFSW=0THENPRINT"{OOWN}SWORD: NO" 
27 IFS\I=lTHENPRINT" {OOWN}SWORD: YES" 
28 PRINT" {OOWN}KEYS FOUND: "K; SPC (30) "TIME 

) "MONSTERS KILLED: "MK 

:rem 26 
:rem 133 
:rem 219 

ELAPSED: "TI$;SPC(25 
:rem 233 

29 PRINT" {OOWN}RETREATS: "RT: IFL=l THENRETURN :rem 41 

288 



Adventures I 
30 PRINT"{3 DOWN}HIT SPACE BAR TO GO ON" :rem 99 
31 GETW$ :IFW$=" "THEN31 : rem 23 
32 RETURN : rem 69 
33 GOSUB80:SP=SP-2:GOSUB41:X=FNB(B):IFX>3THENGOT053 :rem 35 
34 PRINT" {HOME} LOCKED, TRY AGAIN:{ RVS} FI RE (OFF} RETREAT: { RVS} R 

{OFF}" :rem 211 
35 GOSUB92:IFB=0THEN33 :rem 96 
36 RETURN : rem 73 
37 PRINT"{HOME}{44 SPACES}":RETURN :rem 104 
38 FORT=lT02000:NEXT:RETURN :rem 12 
39 POKEN-45,126:RETURN :rem 94 
40 R(G)=N:G=G+l:GOSUB37:RETURN :rem 120 
41 IFSP=00RSP<0THEN75 :rem 79 
42 RETURN :rem 70 
43 P=INT(RND(1)*4)+1:TR$(I)="A KEY":TR$(2)="FOOD AND DRINK":T 

R$(3)="POISON GAS" :rem 184 
44 TR$(4)="A SWORD":GOSUB95:IFG>21ANDK<3THENP=1 :rem 91 
45 IFP=lANDK<3THENGOSUB91:GOSUB83:K=K+l :rem 234 
46 IFP=2THEN:SP=SP+6:GOSUB91:GOSUB79:IFSP>100THENSP=100 

:rem 46 
47 IFP=3THEN:SP=SP-10:GOSUB91:GOSUB78:GOSUB41 :rem 160 
48 IFP=4THEN:SW=SH+l :GOSUB85 :IFSH> 1 THENSH=l :GOT043 : rem 60 
49 GOSUB38:GOSUB37:RETURN :rem 150 
50 IFK<3THENPRINT"(HOME}COWARDl YOU DON'T HAVE ALL OF THE KEY 

SOl : rem 1 70 
51 IFK<3THENN=F:GOSUB38:GOSUB37:RETURN :rem 18 
52 IFK=3THENL=1:GOSUB25:PRINT"{DOWN}CONGRATULATIONS, YOU 

{3 SPACES}ESAPED1":GOT076 :rem 48 
53 T=FNB(B):IFT>5THENGOSUB40:RETURN :rem 31 
54 GOSUB95:PRINT"{HOME}A MONSTER IS GUARDING THE CHEST":GOSUB 

38:GOSUB37 :rem 108 
55 PRINT" {HOME }FIGHT: (RVS }FlRE{ OFF} (12 SPACES} RETREA'r: (RVS}R 

{OFF} " : rem 11 
56 GOSUB92:IFB=0THEN58 :rem 106 
57 POKEN-22,121:RETURN :rem 84 
58 IFSW=lTHENMS=0:GOT061 :rem 42 
59 GOSUB37:PRINT"{HOME}YOU HOULD DIE WITHOUT THE SWORD":GOSUB 

38 : rem 153 
60 GOSUB37:POKEN,121:N=F:RETURN :rem 236 
61 M=FNB(B):H=FNB(B):IFM>7THEN67 :rem 169 
62 GOSUB37:PRINT"{HOME}YOUR MOVE":GOSUB38:GOSUB37 :rem 63 
63 IFH < 4THENPRINT" {HOME }MISSED": GOSUB89 :GOSUB38 :GOSUB3 7 :GOT06 

1 : rem 214 
64 PRINT"{HOHE}YOU HIT THE MONSTER":MS=MS+l:GOSUB88:GOSUB38:G 

OSUB37 :rem 191 
65 IFMS=3THENPRINT"{HOME}YOU KILLED THE MONSTER":MK=MK+l:GOSU 

B38:GOSUB40:RETURN :rem 56 
66 GOT061 :rem 12 
67 GOSUB37:PRINT"{HOME}MONSTER'S MOVE":GOSUB38:GOSUB37 

:rem 151 

289 



Adventures 

68 IFH<5THENPRINT"[HOME}MISSED":GOSUB89:GOSUB38:GOSUB37:GOT06 
1 :rem 220 

69 PRINT"[HOME}THE MONSTER HAS HIT[3 SPACES}YOU":SP=SP-12:GOS 
UB88:GOSUB38:GOSUB37 :rem 218 

70 GOSUB41 : rem 76 
71 PRINT"[HOME}YOUR STRENGTH IS NOW: "SP:GOSUB38:GOSUB37 

:rem 192 
72 PRINT" [HOME } CONTINUE : [RVS }FIRE{ OFF} [9 SPACES} RETREAT: {RVS} 

R [ OFF} " : rem 253 
73 GOSUB92:IFB=0THEN61 :rem 99 
74 POKEN-22,121:RETURN :rem 83 
75 L=1 :GOSUB25: PRINT" [DOWN}YOU DIED" :GOSUB88 :GOT077 : rem 129 
76 FORA=8TOI4:POKE36879,A:GOSUB83:NEXT:GOSUB79:GOT077:rem 162 
77 PRINT" [DOWN} PLAY AGAIN:{ RVS }FIRE[ OFF}" :GOSUB92: RUN : rem 62 
78 FORE=ITOI5STEP.09:POKES4,251:POKEV,E:NEXT:FORE=15T00STEP-. 

I:POKEV,E:NEXT:GOT090 :rem 107 
79 FORL=225T0250STEP.3:POKEV,15:POKESl,L:NEXT:GOT090 :rem 91 
80 FORE=IT03:POKES4,147:FORL=15T00STEP-2:POKEV,L:FORM=IT050:N 

EXTM,L:POKEV,0:NEXT :rem 251 
81 GOT090 : rem 11 
82 POKES2,135:POKEV,5:FORT=IT05:NEXT:GOT090 :rem 19 
83 POKES3,200:FORL=15T00STEP-2:POKEV,L:FORM=IT025:NEXTM,L:POK 

EV,0:GOT090 :rem 174 
84 RETURN : rem 76 
85 IFSW=ITHENGOSUB91:POKEV,15:FORM=IT03:POKES3,200:FORT=1T010 

0:NEXT:POKES3,0 :rem 184 
86 IFSW=ITHENFORT=IT030:NEXTT,M:POKES3,218:FORT=IT0550:NEXT:G 

OT090 :rem 100 
87 RETURN : rem 79 
88 FORM=235TOI50STEP-l :POKEV,15:POKESl,M:NEXT:GOT090 :rem 90 
89 POKES4,240:POKEV,15:FORE=15T00STEP-.l:POKEV,E:NEXT:GOT090 

:rem 99 
90 FORS=36874T036878:POKES,0:NEXT:RETURN :rem 74 
91 PRINT"[HOME}THE CHEST CONTAINS[4 SPACES}"TR$(P):RETURN 

:rem 138 
92 B=PEEK(37137)AND32:IFB=0THENGOSUB37:RETURN :rem 72 
93 A$="":GETA$:IFA$="R"THENRT=RT+l:SP=SP-3:N=F:GOSUB37:GOSUB4 

I:RETURN :rem 107 
94 GOT092 :rem 17 
95 M=N+30720:POKEM,6:POKEN,81:IFF<>NTHENPOKEF,32:RETURN 

:rem 247 
96 RETURN : rem 79 

290 



Chapter 
Ten 

More 
Games 





Bob I 
Appleton Place Your Bet 

You'll feel like you're at the races with "Place Your Bet" running on your 
unexpanded VIC. Place Your Bet is a race simulation for one to four players. 

The game is self-explanatory and easy to play. Simply enter your bets 
when prompted. Keep in mind the odds and the amount of money you have 
remaining. There are ten races, and if you go bust, it can get pretty dull 
watching everyone else playing the odds. 

Place Your Bet 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

10 V9=36879:V=36878:V5=36875:V6=36876:V7=36877:G=48:I%=30720: 
Vl=7694 :rem 49 

20 GOSUB470 :rem 125 
30 B$ (l )=" {BLK}l-SPEEDY": B$ (2 )=" {BLK} 2-SANDY": B$ ( 3) =" {BLK} 3-S 

COOTER":B$(4)="{BLK}4-SLEEPER" :rem 241 
40 B$ (5 )=" {BLK} 5-SILLY": B$ (6) =" {BLK} 6-S0RRY" : B$ ( 7) =" {BLK} 7-SL 

1M" : rem 92 
50 K%=7724:W%=0:S%=0:T%=0 :rem 72 
70 GOSUB550 :rem 129 
75 FORX=IT07:A%(X)=66*X-65:NEXTX :rem 208 
80 PRINT" {CLR} " : POKEV9, 8 : rem 40 
85 FORX=IT07:POKE7679+X*66,48+X:POKE7679+I%+X*66,X:NEXTX 

:rem 187 
90 FORL=IT021:POKE7700+L*22,89:POKE7700+I%+L*22,I:NEXTL 

:rem 224 
100 POKEV,15:FORM=254T0240+INT(RND(I)*10)STEP-l:POKEV6,M:NEXT 

M:POKEV6,0 :rem 158 
110 X=INT( 1+7*RND(TI» : rem 242 
120 IFX=W%ORX=S%THENI10 :rem 162 
130 A%(X)=A%(X)+1 :rem 75 
140 POKEK%+A%(X),81 :rem 3 
150 POKEK%+A%(X)+1,75 :rem 99 
160 POKEK%+A%(X)-1,74 :rem 101 
170 POKEK%+A%(X)+1,73 :rem 99 
180 POKEK%+A%(X)-1,85 :rem 105 
190 POKEK%+I%+A%(X),X :rem 144 
200 POKEK%+I%+1+A%(X),X :rem 228 
210 POKEK%+I%-I+A%(X),X :rem 231 
220 POKEK%+I%-2+A%(X),0 :rem 193 
230 IFA%(X)=X*66-47THENGOSUB780 :rem 68 
240 GOT0100 :rem 96 
250 POKEV9,29 :rem 236 
260 PRINT" {CLR} {OOWN} {RED} {RVS} {8 SPACES}RESULTS{7 SPACES} 

{BLK}{ OFF}" : rem 143 
270 PRINT" # CRAB "TAB (11)" 5X PAYOFF" : rem 69 
275 PRINT"E6 TH5 SPACESH9' T~" :rem 252 
280 PRINTB$(W%)~TAB(10)~O%(W%)*5 :rem 249 

293 



More Games 

290 PRINT" ";B$(S%);TAB(11);O%(S%)*5/2 :rem 211 
300 PRINT"{2 SPACES}";B$(T%);TAB(12);O%(T%)*5/4 :rem 208 
310 FORJ=lTOP% :rem 75 
320 IFC%(J)=W%THENS%(J)=S%(J)+B%(J)*O%(W%) :GOT0360 :rem 22 
330 IFC%(J)=S%THENS%(J)=S%(J)+B%(J)*O%(S%)/2:GOT0360 :rem 112 
340 IFC%(J)=T%THENS%(J)=S%(J)+B%(J)*O%(T%)/4:GOT0360 :rem 117 
350 S%(J)=S%(J)-B%(J) :rem 42 
360 NEXTJ :rem 34 
370 PRINT" {DOWN} {BLU} {RVS} {8 SPACES } TOTALS { 8 SPACES} {BLK} 

{OFF}" ; : rem 225 
380 FORJ=lTOP% :rem 82 
390 PRINT" {DOWN}" ; p$ (J) ; TAB ( 10) ; S% (J) ; "X" : rem 49 
398 IFC%(J)=W%ORC%(J)=S%ORC%(J)=T%THENGOT0900 :rem 163 
399 GOSUB419 :rem 195 
400 NEXTJ :rem 29 
401 GOT0425 :rem 105 
419 POKEV,15 :rem 181 
420 FORT=220T0127STEP-l:POKE36874,T:POKEV5,T:FORM=lT05:NEXTM: 

NEXTT:POKE36874,0:POKEV5,0 :rem 74 
421 RETURN :rem 119 
425 PRINT"{2 DOWN} {PUR} {RVS}PRESS ANY KEY{BLK}{OFF}";:rem 247 
426 GETA$:IFA$='"'THEN426 :rem 91 
440 IFR%<>10THENPOKEV9,27:GOT050 :rem 211 
450 PRINT"{CLR}":POKEV9,15 :rem 135 
451 PRINT U {HOME}{8 DOWN}{10 RIGHT}{RVS}{YEL}THE{2 DOWN} 

{3 LEFT }END{ BLK} {OFF}" : FORM=l T0500 :NEXTM : rem 133 
455 T=506*RND(1):POKET+7680,88:POKET+38400,8*RND(1):GOT0455 

:rem 159 
470 PRINT" {CLR}{RVS}{RED} UQIPLACE YOUR BETUQI"; : rem 213 
475 PRINT"{RED}{RVS}{23 SPACES}{OFF}{BLK}" - :rem 193 
480 PRINT"{DOWN}{BLK}THERE ARE 7 CRABS{3 SPACES}":PRINT"IN EA 

CH RACE AND 10" :PRINT"RACES EACH GAME." : rem 212 
490 PRINT" 1-4 PLAYERS CAN PLAY." : rem 86 
500 PRINT"EACH PLAYER STARTS".:PRINT"WITH A STAKE OF 500X ":PR 

INT"AND CAN BET UP TO" : rem 250 
510 PRINT"WHAT REMAINS IN THIS":PRINT"STAKE." :rem 42 
520 INPUT" {DOWN}{RIGHT}HOW MANY PLAYERS?{LEFT}";P% :rem 104 
530 IFP%<10RP%>4THEN520 :rem 87 
540 FORJ=lTOP%:INPUT"PLAYER'S NAME";P$(J) :S%(J)=500:NEXTJ:RET 
URN: rem 12 

550 DEFFNA(B)=INT(2+8*RND(TI» :rem 219 
560 R%=R%+l :rem 34 
580 POKEV9,254:PRINT"{CLR}(RVS}RACE #";R% :rem 194 
590 PRINT"{DO~m}# CRABS"TAB(ll)"ODDS":PRINT :rem 205 
600 FORB=lT07 :rem 7 
610 O%(B)=FNA(B) :rem 67 
620 PRINT"";B$(B);TAB(10);O%(B);"TO 1" :rem 246 
630 NEXTB :rem 26 
640 PRINT"g22 T~" :rem 109 
650 FORJ=lTOP% :rem 82 

294 



More Games 

660 PRINTP$(J);"{2 SPACES}CRAB#"; :rem 45 
670 INPUT C%(J):IFC%(J)<10RC%(J»7THEN670 :rem 78 
680 PRINT;S%(J);:PRINT"LEFT BET"; :rem 0 
690 INPUT B%(J) :IFB%(J»S%(J)ORB%(J)<0THEN690 :rem 42 
700 NEXTJ : rem 32 
710 POKEV,15:READE%:IFE%=-1THENPOKEV,15:GOT0730 :rem 144 
720 READD%:POKEV5,E%:FORT=1TOD%:NEXTT:POKEV5,0:GOT0710 

:rem 191 
730 POKEV7,135:FORL=15T00STEP-.2:POKEV,L:NEXTL:POKEV7,0 

:rem 21 
740 FORT=1T050:RESTORE:RETURN :rem 196 
750 DATA215,80,225,80,232,80,235,80,235,40,23S,4n,235,80,232, 

80,232,40,232,40 :rem 239 
760 DATA232,80,225,80,232,80,225,80,215,320,215,80,225,80,232 

,80,235,80,235,40 :rem 40 
770 DATA235,40,235,80,235,80,231,80,225,80,21S,80,215,40,215, 

40,215,80,225,640,-1 :rem 178 
780 IFW%=0THEN~V'%=X:POKEV1,X+G:POKEV1+I%,X:RE1'URN :rem 100 
790 IFS%=0THENS%=X:POKEV1+2,X+G:POKEV1+I%+2,X:RETURN :rem 23 
795 IFT%=0THENT%=X:POKEVl+4,X+G:POKEV1+I%+4,X:FORT=1T01500:NE 

XTT:GOT0250 :rem 43 
900 POKEV,15:FORL=1T015:FORM=250T0240STEP-l:POKEV6,M:NEXTM:FO 

RM=240T0250:POKEV6,M:NEXTM :rem 140 
901 POKEV6,0:NEXTL:POKEV,0:GOT0400 :rem 152 

295 



Bobby I 
Evangelista Boogieball 

"Boogieball" is a quick wild-goose chase for the standard VIC which requires 
a quick eye and fast reflexes. A Boogieball is an irritating ball that tries to 
boogie its way out of the arena. The only way to stop the Boogieballs from 
boogeying and escaping is to use your controllable Boogiepopper to pop the 
Boogieball before it reaches the walls of the arena. But wait, just as you pop 
the Boogieball, another one appears on the screen! 

I The Game 
In other words .... 

Imagine yourself in a square arena somewhere on the strange planet of 
Astroyd. In the center of the arena is a small box from which Boogieballs 
exit. The Boogieballs are trying to conquer the outer surface of the planet. 

Now the object of the game is to maneuver your Boogiepopper, using 
the assigned keys (I, J, K, and M), and to pop the randomly moving 
Boogieballs ascending from the box by simply running over them. If the 
Boogieballs dodge your moves and escape by passing through the arena 
walls, 10 points will be subtracted from your score and another Boogieball 
will appear on the screen. 

Sounds easy? Not really. The game gets difficult as it progresses. A 
Boogieball may suddenly change into a Superboogieball worth 20 points as 
opposed to the 10 points for each Boogieball popped. 

I The Antagonist 
No game is complete without an antagonist. Eventually, an evil 
Boogiepopper-stopper will ascend from the box and try to stop you, and you 
can't afford to be killed. 

To make the game even more difficult, a Boogieball or a Superboogieball 
may suddenly change into one of these menacing Boogiepopper-stoppers. If 
you're anywhere around it, quick reflexes are demanded to make a quick get
away, unless, at the rate the Boogiepopper-stopper is moving, you can delib
erately be killed by the stopper boogeying on top of you! 

I Typing the Program 
When entering the program, don't use any spaces except in PRINT state
ments since the program will take up most of the memory. Also, note that 
lines 66 and 78 will exceed the standard limit of 88 characters per line num
ber, so crunching is required by using the abbreviated keywords. For help on 
crunching a program, refer to Appendix D in your Personal Computing Guide 
which has a list of keyword abbreviations. 

Good luck and may the popping force be with you! 

296 



More Games 

Boogieball 
For mistake-proof program entry, be sure to use 'The Automatic Proofreader," Appendix C. 

Some lines of this program require keywords to be abbreviated so that they will not exceed the four-screen-line 
limit. See Appendix B. 

1 HI=0:W=200:CC=30720:V=36878:GOT067 :rem 69 
2 PRINTCHR$(147):SC=0:S1=V-2:Z1=122:Z2=76:Z3=80:Z4=79:Yl=125: 

Y2=109:Y3=110:Y4=112 :rem 228 
3 Pl=7703:P2=7704:P3=7725:P4=7726:C=32:A=7911:B=81 :rem 248 
4 POKE8164,147:POKE8165,131:POKE8166,143:POKE8167,146:POKE816 

8,133:POKE8169,186 :rem 19 
5 FORP=0TOI5:POKE8170+P,160:POKE38891+P,1:NEXT :rem 32 
6 FORP=0T02:POKE7888+P,160:POKE7910+P,160:POKE7932+P,160 

:rem 41 
7 POKE38608+P,6:POKE38630+P,6:POKE38652+P,6:NEXT :rem 93 
8 POKE38631,I:POKE7911,81 :rem 153 
9 FORP=0T021:POKE7680+P,160:POKE38400+P,6:POKE8142+P,160:POKE 

38862+P,6:NEXT :rem 228 
10 FORP=0T0442STEP22:POKE7680+P,160:POKE38400+P,6:POKE770l+P, 

160:POKE38421+P,6:NEXT :rem 218 
11 REM : rem 70 
12 IFA=PI0RA=P20RA=P30RA=P4THEN48 :rem 114 
13 POKEPl,ZI:POKEP2,Z2:POKEP3,Z3:POKEP4,Z4 :rem 186 
14 POKEPl,Yl:POKEP2,Y2:POKEP3,Y3:POKEP4,Y4 :rem 183 
15 POKEPl,C:POKEP2,C:POKEP3,C:POKEP4,C :rem 150 
16 IFPEEK(197)=12THENP1=PI-22:P2=P2-22:P3=P3-22:P4=P4-22:GOSU 

B42 :rem 246 
17 IFPEEK(197)=44THENPl=Pl+l:P2=P2+1:P3=P3+1:P4=P4+1:GOSUB43 

:rem 41 
18 IFPEEK(197)=36THENPl=Pl+22:P2=P2+22:P3=P3+22:P4=P4+22:GOSU 

B44 :rem 248 
19 IFPEEK(197)=20THENPl=Pl-l:P2=P2-1:P3=P3-1:P4=P4-1:GOSUB45 

20 POKEA,32 
21 X=INT(RND(I)*5)+I:IFX=lTHENA=A-44 
22 IFX=2THENA=A+2 
23 IFX=3THENA=A+44 
24 IFX=4THENA=A-2 
25 IFPEEK(A)<>32THENGOSUB47 
26 POKEA,B 
27 IFSC<0THEN65 
28 IFSC>50THENL=150 
29 IFSC<99THENPOKE8173,160 
30 IFSC>100THENL=100 
31 IFSC<999THENPOKE8174,160 
32 IFSC>150THENL=50 
33 IFSC>200THENL=25 
34 IFSC>300THENL=10 

:rem 47 
:rem 99 

:rem 103 
:rem 5 

:rem 61 
: rem 11 

:rem 166 
:rem 70 

:rem 148 
:rem 128 

: rem 50 
:rem 160 
:rem 101 
:rem 123 
:rem 122 
:rem 118 

35 IFSC>400THENL=5 
36 PRINTCHR$(19)"{22 

:rem 76 
DOWN}"CHR$(18)CHR$(5)SPC(6);SC;CHR$(145) 

:rem 19 

297 



I More Games 

37 AA=INT(RND(I)*L)+1 :rem 157 
38 IFAA=3THENB=42 :rem 0 
39 IFAA=5THENB=87 :rem 12 
40 POKEV,15:POKE36875,252:POKE36875,252:POKE36875,0 :rem 195 
41 GOTOll :rem 0 
42 IFPEEK(Pl)=1600RPEEK(P2)=160THENPl=Pl+22:P2=P2+22:P3=P3+22 

:P4=P4+22:RETURN :rem 104 
43 IFPEEK(P2)=1600RPEEK(P4)=160THENPl=Pl-l:P2=P2-1:P3=P3-I:P4 

=P4-1:RETURN :rem 168 
44 IFPEEK(P3)ANDPEEK(P4)=160THENPl=PI-22:P2=P2-22:P3=P3-22:P4 

=P4-22:RETURN :rem 212 
45 IFPEEK(Pl)=1600RPEEK(P3)=160THENPl=Pl+l:P2=P2+1:P3=P3+I:P4 

=P4+1:RETURN :rem 160 
46 RETURN : rem 74 
47 POKEV,15:POKE36877,250:FORT=ITOI00:NEXT:POKE36877,0:A=7911 

:SC=SC-10:B=81:RETURN :rem 24 
48 POKEPl,77:POKEP2,78:POKEP3,78:POKEP4,77 :rem 74 
49 IFB=87THEN58 :rem 134 
50 POKEV,15:POKESl,250:FORT=ITOI00:NEXT:POKESl,0:POKEA,32:A=7 

911:SC=SC+10 :rem 249 
51 IFB=42THENSC=SC+10: B=81 : rem 32 
52 GOT021 :rem 3 
53 PRINTCHR$(19)SPC(242)SPC(66)CHR$(29)" PLAY AGAIN? 

{2 SPACES}(Y/N)" :rem 32 
54 GETA$: IFA$=" "THEN54 : rem 245 
55 IFA$="Y"THEN2 :rem 153 
56 IFA$="N "THENPOKE36879, 27 :PRINTCHR$ (147) CHR$ ( 31) : END 

:rem 174 
57 GOT054 :rem 14 
58 FORPP=15TOISTEP-.5 :rem 55 
59 POKEPl,42:POKEP2,42:POKEP3,42:POKEP4,42 :rem 42 
60 POKEPl,86:POKEP2,86:POKEP3,86:POKEP4,86 :rem 66 
61 POKEPl,77:POKEP2,78:POKEP3,78:POKEP4,77 :rem 69 
62 POKEPl,C:POKEP2,C:POKEP3,C:POKEP4,C :rem 152 
63 POKE36877,150:POKEV,PP :rem 244 
64 NEXT:POKE36877,0:B=81 :rem 159 
65 IFSC>HITHENHI=SC :rem 242 
66 PRINTCHR$ ( 19) SPC (110) CHR$ (18) CHR$ ( 5) SPC (7) "GAME OVER": PRIN 

TCHR$(17)SPC(7)CHR$(18)CHR$(5)"HI:"~HI:GOT053 :rem 175 
67 POKE36879,8 :PRINTCHR$ (147) SPC (116) CHR$ ( 30) "BOOGIEBALL "CHR$ 

(5) :rem 229 
68 FORT=IT03000:NEXT :rem 246 
69 PRINTCHR$(147)CHR$(l7)"THE OBJECT OF THE GAME{4 SPACES}IS 

{SPACE}TO POP THE" :rem 31 
70 PRINT"{4 SPACES}BOOGIEBALL BY" :rem 163 
71 PRINT"MANEUVERING YOUR '+'." :rem 32 
72 PRINTCHR$(l7)CHR$(l59)"{3 SPACES}t" :rem 67 
73 PRINTCHR$( 17)"{3 SPACES}I" :rem 62 
74 PRINT"< J K >{l8 SPACES}M"SPC(44)CHR$(l57)"V" :rem 192 

298 



More Games I 
75 PRINTCHR$(19)SPC(163)CHR$(5)"g "CHR$(158)"GET THIS," 

:rem 154 
76 PRINTCHR$(17)SPC(9)CHR$(5)"* "CHR$(158)"AND THIS, ":rem 132 
77 PRINTSPC(9)CHR$(5)"W "CHR$(158)"BUT NOT"SPC(l6)"THIS1" 

- :rem 88 
78 PRINTCHR$(I7)CHR$(30)"POINTS ARE SUBTRACTED{3 SPACES}IF TH 

E BOOGIEBALL{4 SPACES}REACHES THE BORDER." :rem 93 
79 PRINTCHR$ ( 17) CHR$ ( 5)" Q=HJ PTS. *=20 PTS. (5 SPACES }H=BLOWS 

YOU UPl" - :rem 98 
80 PRINTCHR$ (17) CHR$ (18) CHR$ (159) "HIT ANY KEY TO START" 

81 GETA$:IFA$=""THEN81 
82 GOT02 

:rem 134 
:rem 245 
:rem 213 

299 



FI~~~~~ I Light Cycles 

In this two-player game, which requires the Super Expander cartridge, lines of 
light race across the screen, each trying to outmaneuver the other. The game 
itself is quite simple. Cut off your opponent without hitting anything-walls, 
your own trail, or your opponent's track. If you're not careful, you can even 
get caught in an exploding light cycle. 

Type in "Light Cycles," save it, and (making sure you have the Super 
Expander cartridge plugged in) load and run it. The game screen immediately 
appears. 

The red player controls the light cycle with a joystick. The blue player, 
however, uses the keyboard. Pressing four keys moves the blue cycle in the 
following directions: 
p Up 
L Left 

Down 
Right 

As your cycle moves across the screen, notice that it picks up speed. The far
ther it moves in one direction, the faster it travels. This lets you race your 
opponent to a wall as you try to cut him or her off. 

Don't backtrack-your light cycle will explode! 
Once you've trapped your opponent, a score is displayed, based on the 

length of your trail and the time you survived. You have the options of play
ing a new game, restarting the previous one (retaining the point totals so 
far), or quitting. 

Light Cycles 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

o REM SET KEY REPEAT,SET VARIABLES TO STARTING POSITIONS 
:rem 50 

5 POKE650,128:BF=2:FF=1:GOSUBI00:RS%=0:BS%=0 :rem 72 
10 SCNCLR:COLORl,6,0,8:G~%=RGR(0):IFGR%<>lTHEN:GRAPHICl 

:rem 157 
15 REM CLEAR SCREEN:{2 SPACES}SET COLOR:GRAPHIC MODE :rem 115 
20 DRAH2,60,60T0966,60T0966,966T060,966T060,60 :rem 78 
30 DRAWl,0,0T01023,0TOI023,1023T00,1023T00,0 :rem 142 
35 REM DRAW BORDER :rem 56 
40 GOT0200:REM GAME START :re~ 245 
100 DX%=1:DY%=0:RX=107.4:RY=107.4:XR%=107:YR%=107:SR=180:R%=8 

:rem 248 
105 R%=RJOY( 0) : rem 15 
110 SY%=DY%:SX%=DX% :rem 106 
120 XD%=-1:YD%=0:BX=924:BY=924.6:XB%=924:YB%=924.6:BR=147:G$= 

ilL" :rem 69 

300 



More Games I 
130 YS%=YD%:XS%=XD% :rem 108 
150 RETURN:REM SEE LINE 0 :rem 201 
200 FORF2=lTOINT(RND(1)*30)+10:FORF1=lTOFF:REM HOW LONG AND H 

OW MANY MOVES RED GETS :rem 188 
205 R%=RJOY(0) :rem 16 
210 REM R%=JOYSTICK INPUT AND yffiERE TO GO :rem 178 
220 ON R%GOT0250,260,0,270,230,230,0,280 :rem 1 
230 GOT0300 :rem 97 
250 DY%=-1:DX%=f7J:GOT0290:REM DY%ANDDX% ARE DIRECTIONS RED MOV 

ES :rem 15 
260 DY%=1:DX%=0:GOT0290 :rem 62 
270 DY%=0:DX%=-1:GOT0290 :rem 108 
280 DY%=0:DX%=1:GOT0290 :rem 64 
290 IF(DY%<>SY%)AND(DX%<>SX%)=-lTHEN:SOUND0,0,0,0,15 :rem 26 
292 REM BREAK SOUND ON DIRECTION CHANGE :rem 83 
295 SY%=DY%:SX%=DX%:SR=180 :rem 45 
300 RX=RX+DX%*12.8:RY=RY+DY%*6.4:XR%=RX:YR%=RY:SR=SR+f7J.4 

:rem 223 
305 REM VARIABLES FOR{2 SPACgS}MOVEMENT :rem 103 
310 SOUND0,SR,BR,230,2:REM SR=RED SOUND:BR=BLUE :rem 148 
320 RD%=RDOT(XR%,YR%):REM CHECK TO SgE IF RED HIT SOMETHING 

330 IFRD%<>l THEN 800 
340 POINT3,XR%,YR% 
350 NEXT 
400 FORF3=lTOBF:REM{3 
405 G=PEEK(197):REM{2 

SPACES}BLUE MOVEMENTS 
SPACES}KEYBOARD INPUT AND 

:rem 219 
:rem 82 
:rem 75 

:rem 215 
:rem 145 

WHERE TO GO 
:rem 186 

410 IFG=64THENGOT0500 :rem 15 
420 ONINT(G/10)GOT0480,470,450,460 :rem 109 
430 GOT0500 :rem 101 
450 YD%=1:XD%=0:GOT049f7J :rem 65 
460 YD%=0:XD%=1:GOT0490 :rem 66 
470 YD%=0:XD%=-1:GOT0490 :rem 112 
480 YD%=-1:XD%=0:GOT0490 :rem 113 
490 IF(YD%<>YS%)AND(XD%<>XS%)=-lTHEN:SOUND0,0,0,0,15:REM SEE 

{SPACE} 292 :rem 180 
495 YS%=YD%:XS%=XD%:BR=147 :rem 33 
500 BX=BX+XD%*12.8:BY=BY+YD%*6.4:XB%=BX:YB%=BY:BR=BR+0.4 

:rem 63 
505 REM SEE 305 :rem 243 
510 SOUND0,SR,BR,230,2 :rem 255 
520 BD%=RDOT(XB%,YB%):REM CHECK IF BLUE HIT SOMETHING:rem 122 
530 IFBD%<>l THEN 900 :rem 69 
540 POINT1,XB%,YB% :rem 43 
550 REM :rem 126 
560 NEXT :rem 218 
600 CC%=CC%+1:NEXT:BF=3-BF:FF=3-FF:GOT020:REM REVERSE SPEED A 

DVANTAGE : rem 223 
800 GOSUB1300:REM EXPLODE RED AND CHECK BLUE :rem 63 

301 

• 

- ~ 



I More Gomes 

81~ IFRDOT(BX+XD%*12.8,BY+YD%*6.4)<>ITHENGOSUBI400:GOSUBI500: 
GOSUBI0~:GOSUB950 :rem 227 

815 GOSUBI5~0 :rem 228 
820 DX%=I:DY%=0:RX=107.4:RY=107.4:XR%=107:YR%=107:SR=180:R%=8 

:rem 1 

830 SY%=DY%:SX%=DX% :rem 115 
840 BS%=BS%+CC%:CC%=0 :rem 117 
850 GOT0950 :rem 116 
860 REM ADD SCORE TO RED : rem 69 
900 GOSUB1412J0:REM SAHE AS 8012J-,EXCEPT FOR BLUE :rem 127 
910 IFRDOT( RX+DX%* 12.8, RY+DY%*6.4) <> 1 THENGOSUB1300 :GOSUB1500: 

GOSUB10121:GOSUB950 :rem 3 
915 GOSUB15121121 :rem 229 
920 RS%=RS%+CC%:CC%=0 :rem 148 
930 XD%=-1:YD%=0:BX=924:BY=924.6:XB%=924:YR%=924.6:BR=147:G$= 

"L" : rem 78 
940 YS%=YD%:XS%=XD% :rem 117 
950 GRAPHIC4 :rem 208 
955 REM PRINT SCORE AND OPTIONS :rem 143 
960 PRINT"{3 DOWN}{6 RIGHT}{RED}RED {BLK}":RS% :rem 221 
970 PRINT"{3 DOWNJ{6 RIGHT}{BLU}BLUE{BLK}":RS% :rem 30 
972 DI%=RS%-BS% : rem 66 
974 IFBS%>RS%THENDI%=RS%-RS% :rem 196 
976 PRINT"{3 DOWN}{3 RIGHT}DIFFERENCE":DI% :rem 185 
980 PRINT" {3 DO\WJ{ 5 SPACES} 1 :NEW GAHE" : rem 20 
99121 PRINT"{5 SPACES}2:CONTINUE WITH{9 SPACES}GAHE" :rem 154 
1000 PRINT" {5 SPACES} 3 :QUIT GAHE": POKE198,0 : rem 195 
111210 GETE$:IFE$=""THEN1100 :rem 175 
1110 ONVAL(E$)GOT05,10,2000 :rem 230 
1200 GOT01100 :rem 190 
1300 FORI=1TOI0 :rem 102 
1305 REM DRAW RANDOM RED LINES :rem 242 
1310 DRAW3,RX,RYTORX+INT(RND(1)*100)-50,RY+INT(RHD(1)*100)-50 

:rem 43 
1320 NEXT :rem 5 
1330 RETURN :rem 167 
140~ FORI=IT010 :rem 103 
141215 REM DRAW RANDOM BLUE LINES :rem 64 
1410 DRAWl,BX,BYTORX+INT(RND(I)*100)-50,BY+INT(RND(1)*100)-50 

1420 NEXT 
1430 RETURN 
1500 FORI=254TOI35STEP-1:REM MAKE EXPLOSION SOUND 
1510 SOUNDI,0,0,0,15 
152121 NEXT 
1530 SOUNDI2J,I2J,I2J,0,0:RETURN 
21210121 END 

302 

:rem 234 
:rem 6 

:rem 168 
:rem 42 
:rem 63 

:rem 7 
:rem 12 

:rem 153 



Ha~n'o I Rescue Mission 
You need an unexpanded VIC, a joystick, and quick reflexes to complete 
"Rescue Mission." 

You have just flown into a courtyard, and your job is to get as many 
people onto open ground as possible. Bullets are flying from the gun tower, 
people are popping in and out, and the courtyard walls are high. You must 
remain observant of the people popping out in the open. Rescue them only 
by sweeping down and picking them up; they're the only ones who will earn 
you points. Each time you happen to get shot or crash, you'll lose three 
points and one of your four turns. Time is short (about a minute and a half) 
and the people are panicking, so work fast. Flying high puts you out of 
range of gunfire and allows you to fly faster. 

I Typing In the Program 
Note that periods are used in place of zeros to speed up the program. In or
der to get the program to fit into the unexpanded VIC, certain memory-saving 
techniques were necessary. Be sure not to add any extra spaces. 

Rescue Mission 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

5 PRINT"{CLR}":POKE36879,29:PRINT"{6 Dmm}{4 RIGHT} {RVS}RESCU 
EMISSION" :rem 138 

6 POKE52,29:POKE56,29:CLR:A=25600:TI$="000000" :rem 58 
7 FORI=7176T07431:POKEI,PEEK(I+A):NEXT :rem 109 
8 FORI=7504T07631:POKEI,PEEK(I+A):NEXT :rem 107 
9 POKE37139,.:B=37154:C=37137:D=37152 :rem 2 
10 E=30720:F=36878:G=8142:H=8164:W=8126:J=7697:K=.:Q=8:U=8080 

:rem 148 
12 READA:IFA=-lTHEN22 :rem 248 
13 FORN=ATOA+7:READM:POKEN,M:NEXT:GOT012 :rem 127 
14 DATA7384,255,16,l12,143,142,l12,204,204,7392,16,16,l12,143 

,142,112,204,204 :rem 237 
15 DATA7400,24,36,56,255,16,40,40,108,7408,153,90,60,255,24,6 

0,90,153 :rem 122 
17 DATA7416,16,16,16,56,56,124,124,124,7432,255,255,255,255,2 

4,24,24,24 :rem 232 
19 DATA7440,225,162,230,140,152,156,248,252,7448,254,255,255, 

6,198,70,70,254 :rem 241 
20 DATA7456,128,96,50,25,14,ll,31,31,7464,127,255,255,96,99,9 

8,98,127,-1 :rem 49 
22 PRINT"{CLR}{UP}{2 RIGHT}{PUR}RESCUE MISSION{BLU}":GOSUB180 

:POKEF-9,255:Z=TI :rem 213 
23 FORT=.T03:POKEJ+T,27:POKEJ+E+T,.:NEXT :rem 29 
24 X=INT(RND(1)*20):Y=INT(RND(1)*15):IFX<.ORX>210RY<.ORY>21TH 

ENX=10:Y=10 :rem 165 

303 



I More Games 

26 POKESC,32:SC=7702+X+22*Y :rem 48 
27 POKESC,27:POKESC+E,2:POKEF-l,200:FORL=9T015STEP.7:POKEF,L: 

NEXT : rem 136 
28 POKEF,4:POKEF-l,180:POKESC,28 :rem 166 
30 POKEB,127:0%=(PEEK(C)AND28)OR(PEEK(D)AND128) :rem 230 
32 P%=ABS«O%-100)/4)-7 :rem 136 
350NP%GOSUB80,81,82"83,84,87,,,,88,89,90 :rem 213 
36 GOT026 :rem 10 
80 Y=Y+l:X=X-l:GOSUB94:RETURN :rem 121 
81 X=X-l:Y=Y-l:GOSUB94:RETURN :rem 124 
82 X=X-l:GOSUB94:RETURN :rem 246 
83 Y=Y+l:GOSUB94:RETURN :rem 247 
84 Y=Y-l:GOSUB94:RETURN :rem 250 
87 GOSUB94:RETURN :rem 118 
88 X=X+l:GOSUB94:RETURN :rem 250 
89 X=X+l:Y=Y-l:GOSUB94:RETURN :rem 130 
90 X=X+l:Y=Y+l:GOSUB94:RETURN :rem 120 
94 IFX<.THENGOSUB160 :rem 4 
95 IFX>21THENGOSUB160 :rem 60 
96 IFY>21THENY=21 :rem 32 
97 IFY<.THENY=. :rem 181 
100IFABS(TI-Z»15*360THENR=4:POKEF,.:GOT0166 :rem 221 
103 IFSC<8054THENRETURN :rem 213 
104 IFPEEK(8079)=28THEN150 :rem 222 
106 IFPEEK(8054)=28THEN150 :rem 217 
108 IFPEEK( 8106 )=28THEN155 : rem 222 
110 IFPEEK(8107)=28THEN155 :rem 216 
112 IFSC<8120THENRETURN :rem 207 
114 IFPEEK(G+l)=28THENGOSUB160 :rem43 
115 IFPEEK(H+l)=28THENGOSUB160 :rem 45 
117 IFPEEK(G+2)=28THENGOSUB160 :rem 47 
119 IFPEEK(H+2)=28THENGOSUB160 :rem 50 
120 IFPEEK(H+ll)=28THENGOSUB160 :rem 90 
122 IFPEEK(G+l1)=28THENGOSUB160 :rem 91 
124 IFPEEK(H+14)=28THENGOSUB160 :rem 97 
126 IFPEEK(G+14)=28THENGOSUB160 :rem 98 
127 IFPEEK(W)=28THENGOSUB160 : rem 227 
129 IFPEEK(W+l)=28THENGOSUB160 :rem 65 
130 IFPEEK(W+22)=28THENGOSUB160 :rem 108 
132 IFPEEK(W+23)=28THENGOSUB160 :rem III 
134 IFPEEK(W+44)=28THENGOSUB160 :rem 116 
136 IFPEEK(W+45)=28THENGOSUB160 :rem 119 
138 IFPEEK(H+K)=28THENS=S+10:GOT0173 :rem 178 
139 IFPEEK(H+Q)=28THENS=S+1:GOT0173 :rem 137 
141 RETURN : rem 118 
150 POKEU,46:POKEU+E, .:POKEU+23,46:POKEU+23+E,. :rem 52 
152 FORV= .T02 :FORL=14TO .STEP-2 : POKEF, L: FORT=l T020 :tmXT: NEXT:N 

EXT :rem 10 
154 POKEU,32:POKEU+23,32:GOT0160 :rem 152 
155 POKE8106,46:POKE8106+E, .:FORL=14TO.STEP-2:POKEF,L:FORT=lT 

020:NEXT:NEXT :rem 173 

304 



More Games 

156 POKE8106,32 :rem 43 
160 POKEF+l,31:S=S-3 :rem 117 
161 POKESC,30:POKESC+E,4:POKEF-l,195:FORL=15TO.STEP-l:POKEF,L 

:FORT=lT0100:NEXT:NEXT :rem 62 
164 POKEJ,32:J=J+l:R=R+l:POKEF+l,29 :rem 37 
166 IFR=4THENPOKEF+l,8:PRINT"{CLR}{WHT}{10 DOWN}{6 RIGHT}*GAM 

E OVER*" :rem 248 
167 IFR=4THENPRINT"{2 DOHN}SCORE "~S :rem 28 
170 IFR=4THENPRINT"{DOWN}HIT FIRE TO PLAY AGAIN{BLK}":WAIT371 

37,32:WAIT37137,32,32:GOT05 :rem 18 
171 POKESC,32:GOSUB175:GOT030 :rem 28 
173 POKEF-l,.:POKEF,15:POKEF-2,220:FORT=lT010:NEXT:POKEF-2,. 

:rem 159 
175 PRINT"{HOME}{BLK}{3 DOWN}SCORE(4 SPACES}(3 LEFT}"~S:FORT= 

IT01200:NEXT :rem 231 
176 POKESC,32:X=INT(RND(1)*20)+.:Y=INT(RND(1)*15):SC=7702+X+2 

2*Y:POKESC,28 :rem 83 
177 Q=INT(RND(1)*21):K=INT(RND(1)*20):IFK=QTHENK=Q-l :rem 84 
178 IFQ=10RQ=20RQ=60RQ=70RQ=110RQ=14THENQ=4 :rem 48 
180 POKESC,32:POKEG+l,31:POKEG+l+E,5:POKEG+2,31:POKEG+2+E,5:P 

OKEH+l,33:POKEH+l+E,5 :rem 96 
182 POKEH+2,33:POKEH+2+E,5:POKEG+ll,31:POKEG+ll+E,5:POKEH+11, 

33:POKEH+ll+E,5 :rem 154 
185 POKEG+14,31:POKEG+14+E,5:POKEH+14,33:POKEH+14+E,5 :rem 42 
190 POKEW+l,34:POKID/+l+E,2:POKEW,36:POKEW+E,2:POKEW+22,35:POK 

EW+22+E,. :rem 216 
192 POKEW+23,37:POKEW+23+E,.:POKEW+44,35:POKEH+44+E, .:POKEW+4 

5,37 :rem 80 
193 POKEW+45+E,. :rem 129 
194 POKEH+Q,29:POKEH+Q+E,6:POKEH+K,29:POKEH+K+E, .:RETURN 

200 END 
:rem 240 
:rem 105 

305 



RO~~~i~; I Scavenger Hunt 

"Scavenger Hunt," for the unexpanded VIC, is a perfect game for a Hallow
een party. But play it once and you may be hooked. It's colorful and has 
plenty of action and excitement. As your play improves, you reach more 
difficult levels but are rewarded with higher point values. 

The object of the game is to collect-in only five minutes-10 each of 
the following items: clocks, jack-o'-lanterns, steins, televisions, and umbrel
las. To reach the next level, you must also collect at least 25 bonus items: 
candles, hot dogs, and lamps. All of these items appear at the bottom of the 
screen and move upward. You use the joystick to move a little figure around 
the screen to collect the objects. You may stop the scrolling by pressing the 
fire button. 

Sounds easy, right? There are complications. Scattered all over the 
screen are hedges. If you hit too many of them in a short period of time, you 
lose all your bonus items and are delayed for about five seconds. Stopping 
the scrolling with the fire button helps you gather objects and avoid hedges, 
but not without risk. It also releases a ghost from one of the four corners. 
The ghost's intent is to get you. Releasing the button stops the ghost dead. 
Pressing it again will release another ghost. The result of contacting a ghost 
is devastating. You lose all items collected in that round. 

If you obtain your quota and collect enough bonus items, you will ad
vance to the next level. In the second round, play is the same, but you must 
run into fewer hedges. Ghosts will rush you twice as fast. 

It's quite difficult to reach the third level, but not impossible. In the third 
round, you may not run into even one hedge without penalty. Ghosts move 
at triple speed. Can you make it to level four? 

I Typing In the Programs 
The programs as listed here are written for disk. If you use a Datassette, de
lete line 337, and replace lines 330 and 335 with the following: 
330 PRINT"{CLR}{3 DOWN}PLEASE WAIT FOR PART 2{DOWN}TO 

LOAD.{DOWN} {WHT} 
335 POKE198,1:POKE631,131:END 

Before beginning to enter the program, remove all expansion memory. 
Then type in Program 1 and save it, after making sure there are no errors. 
Next, enter and save Program 2. Tape users should be sure to save Program 
2 on the same tape immediately following Program 1. Disk users must save 
Program 2 with the filename SCAVENGER.2. 

Now, reload Program 1. When you run the program, it will take about 
six seconds to load the machine language and character information. It will 

306 



More Gomes 

then ask if you need instructions. If you do, press the joystick fire button. 
When you finish with the instructions, or if you didn't need them, Program 2 
will automatically load. You may then center the screen with the cursor keys 
and press the fire button to start play. 

Program 1. Scavenger Hunt 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

100 REM SCAVENGER HUNT{l1 SPACES)PART ONE :rem 107 
105 IFPEEK(56)<>30THENPRINT"{CLR)NO EXPANSION, PLEASE.":END 

:rem 237 
110 POKE36879,136 :rem 152 
115 PRINT" {CLR) {4 Dmm) {4 RIGHT) {RVS) {WHT) SCAVENGER HUNT 

:rem 133 
120 PRINT"{3 OO\VN){2 RIGHT){RVS){BLK)REQUIRES{2 SPACES)JOYSTI 

CK :rem 49 
125 POKE52,28:POKE56,28:FORC=7552T07631:POKEC,PEEK(C+25600+12 

8*8) :NEXT :rem 112 
130 FORL=ITOll:READA:READB:FORC=0T07:POKE7168+A*8+C,PEEK(3276 

8+B*8+C):NEXT:NEXT :rem 106 
135 FORL=ITOl1:READA:FORC=0T07:READB:POKE7168+A*8+C,B:NEXT:NE 

XT :rem 244 
140 FORL=7168T07359:READA:POKEL,A:NEXT :rem 136 
145 DATA32,32,62,158,61,159,63,42 :rem 141 
150 DATA44,147,45,148,46,143,47,144,58,140,59,129,60,153 

:rem 7 
155 DATA35,62,127,107,127,127,127,127,85,34,42,186,162,234,16 

8,174,138,171 :rem 134 
160 DATA36,28,42,127,119,93,34,28,0,37,28,62,127,8,8,8,8,12 

:rem 145 
165 DATA38, 30,126,94,94,94,126,30,63,39,62,6.'),81,73,73,73,62, ° :rem 51 
170 DATA41,48,48,168,168,168,168,168,168,42,0,255,255,170,170 

,255,255,O :rem 251 
175 DATA43,252,252,252,252,252,32,32,168,40,34,20,8,127,69,71 

,69,127 :rem 79 
180 DATA33,28,8,28,62,93,28,20,54 :rem 142 
185 DATA169,8,141,15,144,169,255,141 :rem 43 
190 DATA5,144,169,240,141,14,144,169 :rem 32 
195 DATAI27,141,34,145,169,10,141,254 :rem 80 
200 DATA28,141,255,28,96,169,4,45 :rem 146 
205 DATAI7,145,208,10,169,0,205,255 :rem 229 
210 DATA28,240,3,206,255,28,169,8 :rem 138 
215 DATA45,17,145,208,10,169,21,205 :rem 230 
220 DATA255,28,240,3,238,255,28,169 :rem 244 
225 DATAI6,45,17,145,208,10,169,0 :rem 132 
230 DATA205,254,28,240,3,206,254,28 :rem 229 
235 DATA169,119,205,32,145,208,10,169 :rem 84 
240 DATA20,205,254,28,240,3,238,254 :rem 227 
245 DATA28,169,240,205,14,144,240,3 :rem 231 

307 



I More Games 

250 DATA206,14,144,96,173,253,28,201 :rem 28 
255 DATA0,208,5,170,168,76,146,28 :rem 146 
260 DATA201,1,208,7,162,20,160,21 :rem 112 
265 DATA76,146,28,201,2,208,7,162 :rem 140 
270 DATA0,160,21,76,146,28,162,20 :rem 126 
275 DATA160,0,142,251,28,140,252,28 :rem 228 
280 DATA96,173,251,28,205,254,28,240 :rem 38 
285 DATA11,48,6,206,251,28,76,172 :rem 146 
290 DATA28,238,251,28,173,252,28,205 :rem 39 
295 DATA255,28,240,11,48,6,206,252 :rem 191 
300 DATA28,76,191,28,238,252,28,96 :rem 204 
305 PRINT"{3 DOWN}{WHT}{2 SPACES}NEED INSTRUCTIONS? :rem 143 
310 PRINT"{OOWN}PRESS FIRE BUTTON NOW. {BLK} :rem 149 
315 FORL=1T0500:IFNOTPEEK(37137)AND32THEN340 :rem 165 
320 NEXT :rem 212 
325 POKE36879,15:POKE36869,240 :rem 167 
330 PRINT"{CLR}{YEL}PLEASE WAIT {SHIFT-SPACE} :rem 5 
335 POKE198,2 :POKE631, 13 :PRINT" {Hom:} {BLK}": PRINT" {2 DOHN}LOA 

D";CHR$(34);"SCAVENGER.2";CHR$(34);",8" :rem 160 
337 POKE632,13:PRINT"(5 DOWN}RUN":PRINT"{HOME}":END :rem 123 
340 POKE36879,60:POKE36869,242 :rem 166 
345 PRINT" {CLR} {BLK} " :FORL=1 T09 :READA$ :IFA$="~"THEN325 

:rem 217 
350 PRINTA$:NEXT:PRINT"{3 DOHN}{BLU} {RVS} (PRESS{SHIFT-SPACE} 

FIRE{SHIFT-SPACE}BUTTON)"; :rem 77 
355 IFPEEK(37137)AND32THEN355 :rem 171 
360 FORL=1 T099 :NEXT:GOT0345 : rem 215 
365 DATA"YOU HAVE FIVE MINUTES{DOWN}","TO COLLECT 10 EACH OF 

{DOWN1", "THE FOLLOWING ITEMS: {DOWN} : rem 219 
370 DATA "CLOCKS, JACK-O-LANTERNS", "STEINS, TELEVISIONS, {DOWN}" 

, "AND UMBRELLAS. FOR { DOWN } : rem 126 
375 DATA"BONUS POINTS~ YOU MAY{DOWN}","COLLECT AS MANY OF 

{DOWN}", "THESE AS YOU WISH: :rem 52 
380 DATA"CANDLES,HOTDOGS,LAMPS.","YOU USE THE JOYSTICK{DOWN}" 

, "TO MANEUVER AROUND{ DOWN} - : rem 120 
385 DATA "HEDGES AND PICK UP THE", "OBJECTS. PRESS THE {DO\,lN}", " 

FIRE BUTTON TO STOP{ DOWN} - : rem 31 
390 DATA "THE SCREEN MOVEMENT {DO~m} " , "FOR EXTRA CONTROL, BUT", 

"BEWARE THE GHOST WHICH : rem 7 
395 DATA"WILL RUSH YOU FROM ANY", "CORNER. RELEASING THE{DOWN} 

","BUTTON WILL KILL THE{DOWN} - :rem 133 
400 DATA "GHOST, BUT HE IS STILL"," DANGEROUS. {DO~m} " , " {DOWN} 

:rem 245 
405 DATA"YOU WILL NOT RECEIVE{OOWN}","BONUS POINTS UNLESS 

{DOWN1" , "YOU REACH YOUR QUOTA. : rem 3 7 
410 DATA"YOU LOSE YOUR BONUS{DO~m}","ITEr1S IF YOU TOO OFTEN", 

"COLLIDE WITH HEDGES. {DOWN} : rem 235 
415 DATA"YOU LOSE ALL ITEMS IF{DOWN}", "YOU MAKE CONTACT WITH 

{ooWN1" , "A GHOST. TO REACH THE {DOWN} : rem 65 
420 DATA"NEXT LEVEL, YOU MUST{DOWN}","OBTAIN YOUR QUOTA AND 

{OOWN}","COLLECT 25 BONUSES. :rem 32 
425 DATA"~ :rem 54 

308 



More Games I 
Program 2. Scavenger.2 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

100 REM SCAVENGER HUNT{ll SPACES}PART THO :rem 131 
105 R=RND(-TI) :POKE36879,10:PRINT"{CLR}{4 DOWN}{4 RIGHT}{GRN} 

{RVS}SCAVENGER HUNT :rem 108 
110 PRINT"{4 DOWN}{CYN}{2 SPACES}CENTER SCREEN WITH{7 SPACES} 

{DOWN}CURSOR KEYS :rem 12 
115 PRINT"{4 DOWN}{YEL}{RIGHT}{RVS}PRESS{2 SPACES}F B 

{2 SPACES}TO BEGIN :rem 116 
120 GETA$ :rem 216 
125 IFA$=" {RIGHT} "THENPOKE36864, PEEK( 36864) +1: I FPEEK ( 36864 )=9 

THENPOKE36864,2 :rem 35 
130 IFA$=" {DOWN} "THENPOKE36865, PEEK( 36865) +1: I FPEEK ( 36865) =35 

THENPOKE36865,16 :rem 123 
135 IFPEEK(37137)AND32THEN120 :rem 157 
140 PRINT"{CLR} :rem 215 
145 SYS7168:DEFFNR(R)=RND(1)*R:SG=7421:DEFFNP(P)=7680+X+Y*22: 

DEFFNG(G)=7680+XG+YG*22 :rem 229 
150 V=36878:CO=36879:BZ=36875:H=10:U=36876:LV=1:D$=" {HOME} 

{7 DOWN} :rem 66 
155 FORM=0T02STEP2:FORL=lT022:READA:NEXT:POKEV,250 :rem 243 
160 FORL=lT07:READA:READB:POKEBZ,A:POKEU-M,A:FORP=0T099*B:NEX 

T:NEXT:POKEV,240 :rem 42 
165 RESTORE:POKEU-M,0:NEXT :rem 205 
170 C=30720:PX=7422:PY=7423:DEFFNJ(J)=NOTPEEK(37137)ANDJ:POKE 

U,240 :rem 186 
175 K=2:TI$="000000 :rem 209 
180 GOSUB535 :rem 182 
185 O=FNR(25) :IFO>9THENO=0 :rem 66 
190 Z=0:POKEFNP(P),32 :rem 224 
195 ON(O+1)GOSUB480,485,490,495,500,505,510,515,520 :rem 139 
200 GOSUB525 :rem 174 
205 SYS7197 :rem 110 
210 X=PEEK(PX):Y=PEEK(PY) :rem 53 
215 IFZ=lANDPZ<>FNP(P)THENPOKEPZ,32 :rem 4 
220 PZ=FNP(P) :rem 0 
222 IFPEEK(PZ»33THENON44-PEEK(PZ)GOSUB350,350,350,365,365,36 

5,365,365,375,410 :rem 136 
225 POKEC+PZ,7:POKEPZ,33 :rem 232 
230 IFI'I$>"000500"THEN285 :rem 90 
235 IFH<10THENH=H+1 :rem 102 
240 IFFNJ(32)THENGOSUB445:Z=1:GOT0205 :rem 17 
245 GOT0185 :rem 114 
250 BO=BO+Q:Q=0:BN=0:FORP=lT05:Q(P)=0:NEXT :rem 106 
255 LV=LV+1 :rem 121 
260 FORP=lT09:FORL=lT09:POKEV,240+L:POKEBZ,200+P*2+L*4:POKEC0 

,P*2+20*L:NEXT:NEXT :rem 255 
265 POKEV,240:POKECO,8 :rem 67 
270 PRINT" (CLR}": PRINTTAB (1l9) LV : rem 41 
275 FORL=lT02000:NEXT :rem 29 

309 



I More Gomes 

280 GOT0175 :rem 112 
285 GOSUB530:GOSUB545 :rem 15 
29~ POKEV,24~ :rem 226 
295 FORL=lT03000:NEXT :rem 32 
3~0 IFQ<75~0*LVTHEN325 :rem 16 
305 FORP=lT09:FORL=lT09:POKEV,240+L:POKEBZ,200+P*2+L*4:POKECO 

,P*2+20*L:NEXT:NEXT :rem 255 
310 POKEV,24~:POKECO,8 :rem 58 
315 FORL=lT02~0~:NEXT :rem 24 
320 GOT0250 :rem 101 
325 PRINT"{DOWN}{3 RIGHT}{PUR}= ,-./{4 RIGHT}{GRN}> /:~< 

:rem 240 
33~ IFFNJ(4)THENRUN140 :rem 65 
335 IFFNJ( 16) THENPRINT "{ CLR} {BLU} " ~ :POKE36869, 240: POKE37154, 2 

55:POKECO,27:END :rem 190 
340 L=L+.01:IFL>lTHENL=~:POKECO,FNR(255) :rem 140 
345 GOT0330 :rem 1~7 
350 BN=BN+1:POKEBZ,250 :rem 25 
355 POKEV,247:RETURN :rem 5 
36~ POKEBZ,235:POKECO,8:GOT0355 :rem 153 
365 IFQ(41-PEEK(PZ»<>10THENPOKECO,15:Q(41-PEEK(PZ»=Q(41-PEE 

K(PZ»+1:GOT0360 :rem 101 
370 RETURN :rem 122 
375 POKEBZ,0:POKECO,25:POKEV,250 :rem 214 
380 FORL=lT011:READA:READB:POKEU,A:FORM=0T099*B:NEXT:POKEU,0: 

NEXT :rem 3 
385 RESTORE:POKEV,240:POK&J,240:POKECO,8 :rem 36 
390 GOSUB530:FORL=0T09:GOSUB545:NEXT :rem 59 
395 FORL=l T0163 :PRINTD$SPC( L)" {WHT} #": FORP=l T020: NEXT : NEXT : B 

N=0:FORP=lT05:Q(P)=0:NEXT :rem 115 
40~ FORL=0T09:GOSUB545:NEXT:GOSUB535 :rem 56 
405 SYS7276:RETURN :rem 136 
410 H=H-5*LV:IFH<0THEN420 : rem 210 
415 POKECO,138:FORL=lT09:POKEBZ,175-L*5:POKEV,253-L:NEXT:POKE 

CO,8:RETURN :rem 112 
420 FORM=l T06 :GOSUB415 :NEXT: H=H!j :POKEV, 240 : rem 127 
425 GOSUB530 :rem 179 
430 FORL=lT020:GOSUB545:NEXT :rem 14 
435 GOSUB535 :rem 185 
440 BN=0:RETURN :rem 175 
445 IFZ=0THENPOKESG,FNR(4):SYS7276:GOT0460 :rem 158 
450 POKEGE,OP:POKEC+GE,CP :rem 65 
455 FORL=lTOLV:SYS7321:NEXT :rem 3 
460 XG=PEEK(7419):YG=PEEK(7420):GE=FNG(G) :OP=PEEK(GE) :CP=PEEK 

(C+GE) :rem 35 
465 POKEC+GE,1:POKEGE,35 :rem 174 
470 IFGE=PZTHEN375 :rem 107 
475 RETURN :rem 128 
480 PRINT:RETURN :rem 67 
485 PRINTTAB(FNR(21»"{RED}$":RETURN :rem 142 
490 P RINTTAB (FNR( 21) )" {~ffiT} I " : RETURN : rem 118 

310 



I --

More Games I 
495 PRINTTAB(FNR(21»"{BLU}&":RETURN :rem 148 
500 PRINTTAB (FNR( 21»" {PUR} %" : RETURN : rem 3 
505 PRINTTAB (FNR( 21) )" {CYN} (": RETURN : rem 14 
510 POKE646,10:PRINTTAB(FNR(21»"*":RETURN :rem 3 
515 POKE646,FNR(7)+9:PRINTTAB(FNR(21»")":RETURN :rem 120 
520 POKE646 ,FNR( 7) +9 :PRINTTAB (FNR( 21) )" +" : RETURN : rem 118 
525 POKE646, 13 :FORL=1 T02 :PRINTTAB (FNR( 20) )" {Up} "CHR$ (34) CHR$ ( 

34):NEXT:RETURN :rem 13 
530 PRINTD$" {Up} " : :FORL=1 T0198 :PRINT" {WIlT} ": :NEXT: RETURN 

:rem 155 
535 PRINT"{CLR}": :FORP=IT023:GOSUB480:GOSUB525:NEXT :rem 72 
540 RETURN : rem 121 
545 Q=0:FORP=IT05:Q=Q+Q(P)*100*LV:NEXT :rem 73 
550 IFQ=5000*LVTHENQ=Q+BN*100*LV:K=5 :rem 143 
555 PRINTD$" {CYN} {5 RIGHT} "RIGHT$(TI$, 3)," {YEL} "O+BO" {\'IHT} 

:rem 93 
560 FORP=IT05:PRINTTAB(P*4-3)Q(P)::POKE7920+P*4,41-P:NEXT 

:rem 221 
565 POKE646,K:K=2 :rem 218 
570 PRINTSPC(56-LEN(STR$(BN*UI0*LV»)"??"BN*100*LV"?? :rem 38 
575 RETURN :rem 129 
580 DATAI75,6,175,4,175,2,175,6,187,4,183,2,183,4,175,2,175,4 

,167,2,175,8 :rem 80 
585 DATA228,6,227,3,228,9,219,6,221,6,212,6,215,18 :rem 214 

311 



Steven R'I 
McCloskey Hide-N-Seek 

"Hide-N-Seek" is a game for two players using an unexpanded VIC and a 
joystick. At the start of the game, player 1 must attempt to maneuver his or 
her figure across the board and pick up dots to collect points. Use these keys 
for moving in four directions: 

Up f5 
Down f7 
Right left/right cursor 
Left up / down cursor 
As the figure moves toward the opening, player 2 must try to catch and stop 
the figure by using the joystick to control a car. As the car moves, it puts out 
quad dots which are worth twice as much if player l's character picks them 
up. If the character makes it to the opening on the other side of the screen, a 
new screen comes up with all dots increased in value. Once the car catches 
player l's figure, the roles reverse: Player 2 controls the figure and uses the 
keyboard, while player 1 controls the car by using the joystick. When player 
2 has been caught, the game is over. 

Hide-N-Seek 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

5 POKE36879,26:POKE36878,15:CL=30720:PRINT"{CLR}{10 DOWN} 
{5 SPACES}{RED}HIDE*N*SEEK{6 SPACES}" :rem 94 

10 POKE52,28:POKE56,28:CLR:P=36874 :rem 229 
20 X=27:FORI=7168T07679:POKEI,PEEK(I+25600}:POKEP+5,X:X=X+1:I 

FX=32THENX=24 :rem 47 
22 IFI=7200THEN600 :rem 7 
25 NEXT:I=I:J=0:R=200 :rem 227 
30 FORC=7432T07487:READA:POKEC,A:NEXT:POKE36869,255 :rem 129 
40 DATAI95,195,170,170,170,170,195,195,235,235,40,40,40,40,23 

5,235 :rem 230 
50 DATA0,0,0,24,24,0,0,0,0,102,102,0,0,102,102,0 :rem 11 
60 DATA255,195,189,165,165,189,195,255,0,32,96,255,255,96,32, 

0,28,28,8,62,8,28,20,20 :rem 128 
65 PRINT"{CLR}{2 OOWN}{RED}Pr.AYER"~I", THE MAN, ":PRINT" {OOWN} 

USES THE KEYBOARD.":IFI=2THENA=I:GOT070 :rem 172 
67 A=2 :rem 29 
70 PRINT"{3 DOWN}PLAYER"~A", THE CAR, ":PRINT" {OOWN}USES THE J 

OYSTICK." : rem 226 
75 PRINT"{4 DOWN}{RVS}GET READY 111{OFF}":FORX=IT05000:NEXT 

:rem 165 
80 Y=128:CL=30720:FORX=7724T08185:POKEX+CL,0:POKEX,35:POKEP,Y 

:Y=Y+l:IFY=149THENY=128 :rem 234 
82 NEXT:POKEP,0 :rem 190 
85 FORX=ITOI00:Y=INT(RND(I)*462}+I:POKE7723+Y+CL,2:POKE7723+Y 

, 37:POKEP+2,140+X:NEXT :rem 227 

312 



More Games 

87 POKEP+2,0 :rem 167 
90 FORX=7724T08164STEP22:POKEX+CL,2:POKEX,37:POKEX+21+CL,2:P0 

KEX+21,37:NEXT:POKE7944,32 :rem 150 
100 FORX=7945T07949:POKEX+CL,0:POKEX,35:POKEX+15+CL,0:POKEX+1 

5,35:NEXT:IFN=2THEN170 :rem 166 
105 IFN=lTHEN190 :rem 170 
110 FORB=0T096:READC:POKE831+B,C:NEXT :rem 45 
120 DATA169,0,141,62,3 :rem 94 
130 DATA141,60,3,141,61,3,169,0,141,19,145,169,127,141,34,145 

,173,32,145,41,128 :rem 82 
140 DATA201,0,208,5,169,1,141,60,3,169,255,141,34,145,173,17, 

145,41,8,201,0,208,5,169 :rem 116 
150 DATA22,141,60,3,173,17,145,41,16,201,0,208,5,169,1,141,61 

,3,173,17,145,41,4,201,0 :rem 88 
160 DATA208,5,169,22,141,61,3,173,17,145,41,32,201,0,208,5,16 

9,1,141,62,3,96 :rem 186 
170 G=0:H=10:G=G-H :rem 230 
190 A=7945:B=7964:C=33:D=39 :rem 203 
200 SYS831:M=PEEK(828)-PEEK(829) :rem 79 
205 POKEP,0:F=0:IFPEEK(A+M)=39THEN400 :rem 195 
210 E=PEEK(197):IFE=23THENF=1 :rem 191 
215 IFE=31THENF=-1 :rem 29 
220 IFE=55THENF=-22 :rem 82 
225 IFE=63THENF=22 :rem 41 
230 IFF+B<77240RF+B>8185THENF=0 :rem 49 
235 IFPEEK(B+F)=37THENF=0 :rem 219 
240 IFPEEK(B+F)=35THENG=G+H :rem 96 
245 IFPEEK(B+F)=36THENG=G+(H*2) :rem 19 
250 IFB=7944THENH=H+10:N=1 :GOT080 : rem 214 
255 POKEB,32:B=B+F:POKEB+CL,6:POKEB,39:POKEP+2,R:IFF=0THENPOK 

EP+2,0 :rem 139 
260 IFM=220RM=-22THENC=34:GOT0270 :rem 243 
265 C=33 :rem 131 
270 IFM=210RM=-21THENM=0 :rem 185 
275 IFPEEK(A+M)=37THENM=0 :rem 236 
280 IFA+M<77240RA+M>8185THENM=0 :rem 73 
290 POKEA+CL,0:POKEA,36:A=A+M:POKEA+CL,12:POKEA,C:POKEP+2,0:P 

OKEP,R:IFM=0THENPOKEP,0 :rem 19 
300 PRINT" {HOME} {GRN}H. S. {BLK}":J :PRINT" {HOME} {11 RIGHT} {GRN} 

# ={ BLK}": H :PRINT" {HOME} {DOWN} {GRN} PLAYER{ BLK}": I" {GRN} SC 
ORE{ BLK}":G : rem 173 

310 GOT0200 :rem 95 
400 GOSUB500:IFI=lTHENK=G:I=2:N=2:GOT065 :rem 238 
410 L=G: IFL>JTHENJ=L : rem 4 
420 IFK>JTHENJ=K :rem 249 
430 0=1:IFL>KTHEN0=2 :rem 223 
440 PRINT" {CLR} {3 DOWN} {RED}THE WINNER IS PLAYER":O :rem 242 
450 PRINT"{2 DOWN}HIGH SCORE":J:PRINT"{3 DOWN}{8 RIGHT}SCORE" 

:rem 79 
460 PRINT"{2 DOWN}PLAYER 1 :":K:PRINT"{2 DOWN}PLAYER 2 :":L 

:rem 56 

313 



More Games 

470 PRINT"{3 DOWN} HIT ANY KEY TO START" :rem 134 
480 POKE198,0:WAIT198,1:I=1:N=1:K=0:L=0:G=0:GOT065 :rem 207 
500 POKEP+4,10:FORX=230T0128STEP-1:POKEP+2,X:FORY=1T020:NEXT: 

NEXT:POKEP+2,0:POKEP+3,200 :rem 227 
510 FORX=15T00STEP-.05:POKEP+4,X:NEXT:POKEP+3,0:POKEP+4,15:RE 

TURN :rem 147 
600 PRINT" {CLR}{ 2 DOWN}{RED}TO MOVE WITH KEYBOARD:" :PRINT" 

{DOWN}UP : PRESS F5":PRINT"{2 DOWN}DOWN : PRESS F7" 

610 PRINT" {2 
R" 

:rem 133 
DOWN}RIGHT : PRESS LEFT -":PRINT"{DOWN}RIGHT CRS 

620 PRINT"{2 DOWN}LEFT : PRESS UP -
:rem 251 

DOWN" :PRINT"CRSR" :GOT025 
:rem 166 

314 



M~~Y~~:Y I Chopper Lift 

"Chopper Lift" is a challenging game for an unexpanded VIC. It uses 
custom character graphics and requires a joystick. When the game begins 
you start with 1000 units of time. Your objective is to achieve the high score 
by advancing from one level to the next. 

You'll start on level 1. Use a joystick to move your character back and 
forth across the platform, and try to catch the jumping bean. When you catch 
the bean, you'll receive one jump unit and 50 points. 

There's a helicopter overhead with a hanging ladder. When you think 
you have enough jump units to reach the ladder, push the fire button. If you 
catch the ladder, you'll be pulled up into the helicopter and brought to the 
next level; you'll also receive 1000 points. If you fail to catch the ladder, 
you'll fall back to the platform for another try. Don't waste your jumps, for 
the ladder gets longer and shorter, and the platform gets smaller. If the plat
form disappears from underneath, you'll fall down to the next level and lose 
1000 points. If you hit bottom or if time runs out, the game is over. 

Chopper Lift 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

5 POKE36879,190:PRINT"{CLR}{11 DOHN}{5 RIGHT}{BLU}CHOPPER LIF 
Til :POKE52, 28 : POKE 56 , 28:CLR : rem III 

10 FORI=7168T07679:POKEI,PEEK(I+25600):NEXT :rem 98 
15 FORC=7448T07535:READA:POKEC,A:NEXT:POKE36869,255 :rem 133 
20 DATA56,56,16,254,56,56,40,40,186,186,146,254,56,56,40,40,2 

4,24,16,28,16,56,104,76 :rem 105 
25 DATA48,48,16,112,16,56,44,100,0,0,0,0,0,0,24,24,24,24,0,0, 

0,0,0,0 :rem 235 
30 DATA7,0,64,255,65,0,0,1,255,32,112,248,248,112,138,252,132 

,252,132,252,132,252,132 :rem 107 
35 DATA252,255,255,255,255,255,255,255,255,0,0,0,0,0,16,209,2 

55 :rem 73 
70 PRINT I {CLR}":CL=30720:A=8021:I=21:L=26:S=16 :rem 207 
75 Y=1000:V=1:W=0:Z=0:CC=36874 :rem 201 
80 POKECC+2,0:FORT=38730T038751:POKET,4:NEXT:FORT=8033T08052: 

POKET+CL,6:POKET,44:NEXT :rem 99 
85 B=7789:D=22:G=B:I=I-l:L=L-l:N=8032:0=22:Q=8011:U=8010:S=S-

I:W=0:AA=0:K=0:H=0:R=0 :rem 29 
90 FORT=38510T038531:POKET,0:NEXT:POKE(A-22)+CL,1:POKE(A-23)+ 

CL,1:GOSUB300 :rem 175 
95 POKECC+4,15:DD=200 :rem 165 
100 J=37151:POKEJ+3,255:POKEJ+3,127 :rem 201 
110 X=PEEK(J+l)AND128:JE=-(X=.):X=PEEK(J):JS=-«XAND8)=.):POK 

EQ,39 :rem 138 
120 JW=-«XAND16)=.):JN=-«XAND4)=.):FB=-«XAND32)=.):rem 174 
135 IFJETHENM=1:C=37:GOT0160 :rem 207 

315 



I More Games 

145 IFJWTHENM=-1:C=38:GOT0160 :rem 16 
150 IFFBTHEN600 :rem 114 
155 M=0:C=35: :rem 177 
160 POKECC,128 :rem 19 
165 K=K+1:IFK=LTHEN400 :rem 43 
170 H=H+1:IFH=ITHENH=0:GOSUB300 :rem 137 
180 POKEQ,40:R=R+1:IFR=STHENGOSUB500 :rem 15 
190 IFPEEK(A+M)=40THENW=W+l:Z=Z+50:POKECC+2,DD:GOSUB500 

:rem 121 
230 PRINT" {HOME} {GRN}TIME{ BLK}" 1 Y" {LEFT} ":Y=Y-l :PRINT" {HOME} 

{10 RIGHT} {GRN}SCORE{BLK}" 1 Z1" {LEFT} ":PRINT" {HOME} {DOWN} 
{GRN}JUMP{BLK}"1W1"{LEFT} " :rem 52 

240 PRINT"{HOME}{DO~JN}{10 RIGHT}{GRN}LEVEL{BLK}"1V1"{LEFT} " 
:rem 128 

245 IFY=0THEN900 :rem 184 
250 POKEA,32:A=A+M:POKEA,C :rem 34 
255 POKECC,0 :rem 173 
260 IFPEEK(A+22)=44THENI00 :rem 210 
265 POKEQ,32:IFV>ITHEN800 :rem 3 
270 FORT=ATOA+132STEP22:POKET+CL,4:POKET,35:POKECC+2,DD:FORR= 

IT025:NEXT:POKET,32:NEXT :rem 234 
280 POKEA+154+CL,4:POKEA+154,45 :rem 237 
290 POKECC+2,0:POKECC+3,220:FORT=15T00STEP-l:POKECC+4,T:FORX= 

1T025:NEXTX:NEXTT:GOT0900 :rem 4 
300 FORT=1TOF:POKEG,32:G=G-22:NEXT:POKEG,32:POKEG-l,32:rem 85 
310 B=B+1:D=D-2:E=INT(RND(I)*D)+I:F=INT(RND(I)*4)+5:G=B:G=G+E 

: POKEG, 42: POKEG-l ,41. : rem 170 
320 FORT=ITOF:G=G+22:POKEG,43:NEXT:RETURN :rem 145 
400 K=010=O-2:POKEN+O,32:N=N+l:POKEN,32:GOTOI70 :rem 68 
500 R=0:POKEQ,32:P=INT(RND(I)*20)+I:Q=P+U:POKECC+2,0:RETURN 

: rem 74 
600 IFW=0THEN155 :rem 179 
610 POKEA,32:POKEA+CL,1:A=A-22:POKEA,36:POKEA+CL,4:POKECC,DD: 

DD=DD+l:W=W-l:IFW=0THEN650 :rem 70 
620 IFA<7834THEN650 :rem 68 
630 IFPEEK(A-22)=43THENPOKEQ,32:POKECC,0:GOT0700 :rem 169 
640 GOT0600 :rem 105 
650 POKEA,32:POKEA+CL,1:A=A+22:POKEA,36:POKEA+CL,4:POKECC,DD: 

DD=DD-1 :rem 112 
660 IFA>8010THEN155 :rem 61 
670 GOT0650 :rem 113 
700 POKEA+CL,1:POKEA,32:A=A-22:IFPEEK(A)=42THENPOKECC+1,0:GOT 

0720 :rem 174 
710 POKEA+CL,4:POKEA,36:POKECC+l,DD:DD=DD+l:FORT=IT025:NEXT:G 

OT0700 :rem 179 
720 POKFA,32:POKEA-1,32:A=A-22:IFA<7746THENA=A+440 :rem 140 
730 POKEA+CL,0:POKE(A+CL)-1,0:POKEA,42:POKEA-l,41:POKECC+2,DD 

:DD=DD+1:FORT=IT025:NEXT :rem 173 
740 IFA<8010ANDA>7987THENA=A+22:POKEA,36:V=V+l:Z=Z+1000:POKEA 

-22,32:POKEA-23,32:GOT080 :rem 103 
750 GOT0720 :rem 110 

316 



I --

More Games I 
800 FORT=lTOF:POKEG,32:G=G-22:NEXT:POKEG,32:POKEG-l,32:rem 90 
810 V=V-l:Z=Z-1000 :rem 249 
820 POKEA,32:POKEA+CL,1:A=A+22:IFA>8164THENA=A-440 :rem 178 
830 IFA>8009ANDA<8032THENPOKEA+CL,4:POKEA,35:POKECC+2,0:I=I+2 

:L=L+2:S=S+2:GOT080 :rem 93 
840 POKEA+CL,4:POKEA,35:POKECC+2,DD:DD=DD-l:FORT=lT025:NEXT:G 

OT0820 :rem 188 
900 POKECC+4, 0 :POKECC+3,0 :PRINT" {HOME} {3 DOWN} {6 RIGHT}GAME 

{2 SPACES}OVER{7 SPACES}HIT ANY KEY TO PLAY!" :rem 183 
910 IFZ>HSTHENHS=Z :rem 189 
920 IFV>HLTHENHL=V :rem 168 
930 PRINT" {HOME} {RED}H.S. {BLK} ,. rHS:" {LEFT} ": PRINT" {HOME} 

{DOWN}{RED}H.L.{BLK}":HLr"{LEFT} " :rem 203 
940 GETA$:IFA$=""THEN940 :rem 93 
950 GOT070 :rem 62 

317 



~~~~~ISpring Man 

"Spring Man" is a game for the unexpanded VIC. The objective is to climb 
up a series of ladders and platforms to reach your goal. There are six levels 
of difficulty. What makes the game even more complicated is that each of 
the platforms has five bouncing springs. The Spring Man must climb ladders 
and run across the platforms to reach the top. You score points through bonus 
points that are earned as each level is completed. 

On each level, bonus points tick away as time passes. Once all the 
points are gone, the Spring Man loses all his lives and the game ends. The 
Spring Man can lose a life in various ways-by falling off the ladders or 
platforms, by running out of time, or by being smashed by the springs. 

The joystick can make three different movements: left, right, and up 
(climbing the ladders). 

This is not an easy game to win. As a reward for your skillfull play, you 
win another life each time you achieve a new level (four lives are given per 
game). In addition, the game speeds up after the third level. 

I Altering the Program 
To make the game easier, you may want to increase the value of N in line 
14. Also in line 14, you can change the variable CO to equal a higher num
ber by adding 16 for every level you want to advance. This number should 
never exceed 136. 

Spring Man 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

5 POKE52,28:POKE56,28:POKE51,0:POKE55,0:CLR:FORX=7424T07432:P 
OKEX,0 : NEXT : rem 208 

7 FORX=7168T07255:READDA:POKEX,DA:NEXT:POKE36869,255 :rem 6 
14 PRINT" {CLR}" :N=4: CO=56 : rem 54 
15 PRINT"{HOME}{CLR}{RED}{3 OOWN}{2 SPACES}@@@@@@@@@@@@@@@@@@ 

@@":PRINT"{OOWN}{2 SPACES}@@@@@@@@@@@@@@@@@@" :rem 200 
20 PRINT" {2 DOWN}{ 3 SPACES }@@@@@@@@@@@@@@@@@@" : PRINT" {2 DOWN} 

{3 SPACES}@@@@@@@@@@@@@@" :rem 130 
25 PRINT" {2 DOWN} @@@@@@@@@@@@@@@@@@":PRINT"{2 DOHN} @@@@@@@@ 

@@@@@@@@@@ " :rem 135 
30 PRINT" {2 DOHN }@@@@@@@@@@@@@@@@@@@@ : rem 52 
40 PRINT" {HOME}" : SPC ( 17)" {OFF} {WHT} E{ RVS} -": N: " {HOME} {DOWN} " 

SC :rem 67 
45 IFN<=0THEN300 :rem 177 
82 POKE36879,CO:LA=7745 :rem 67 
84 IFCO>136THEN910 :rem 46 
85 J2=37137:J3=37152:J4=28:J5=128:J6=37154:POKEJ6,127:rem 187 
86 T=32:W=6:G=3:H=2:K=I:AA=23:BB=21:LL=22:P=197 :rem 212 

318 



More Games I 
87 M=812e:POKE36878,15:POKEM,le:Sl=36877:BO=9000:S2=36874:S3= 

36876:CL=104 :rem 155 
88 Fl=4:F2=5:F3=7:F4=8:F6=10:0=0:BI=100:Ll=20:L2=16:L3=19:S7= 

2ee:CI=136:S8=212 :rem 13e 
89 RI=INT(RND(1)*2):A=7900:C=8055:B=8009:D=7878:E=7790:L=230 

:rem 105 
ge A=A+RI:C=C+RI:B=B-RI:D=D-RI:E=E-RI :rem 4 
91 FORU=lTOll :rem 25 
92 POKEA,G:POKEB,W:POKEC,W:POKED,W:POKEE,W :rem 12 
93 IFPEEK(M)=30RPEEK(M)=6THEN930 :rem 208 
94 J=(PEEK(J3)ANDJ5)OR(PEEK(J2)ANDJ4):J=ABS«J-BI)!4)-7 

:rem 193 
95 IFJ=11THENPOKEM,T:M=M+K:POKEM,Fl:POKES2,S7:POKES2,0 

: rem 254 
96 IFJ=3THENPOKEM,T:M=M-K:POKEM,F3:POKES2,S7:POKES2,0:rem 212 
98 IFJ=6ANDPEEK(M)=KORPEEK(M)=HTHENPOKEM,T:M=M-LL:POKEM,F6:PO 

KES2,S7:POKES2,0 :rem 48 
99 POKEA,T:POKEB,T:POKEC,T:POKED,T:POKEE,T :rem 20 
100 A=A+AA:B=B-AA:C=C-BB:D=D-AA:E=E-BB:POKES3,S8 :rem 91 
102 IFM=LATHEN940 :rem 5 
103 IFCO=CIANDPEEK(LA)=TTHENPOKELA,9 :rem 53 
104 PRINT" {HOME} {BLK} {3 DOWN} {2 SPACES}B{r:lO\VN} {LEFT}A{DOWN} 

{LEFr }A" ~ TAB (Ll )" {DOWN} B{ DOWN} {LEFr} A{ DOWN} {LEFT}A" 
:rem 177 

le5 PRINT" {3 SPACES} B{ DOWN} {LEFr }A{ DOWN} {LEFr }A" ~ TAB ( L2)" 
{DOWN}B{DOWN} {LEFr}A{DO\VN} {LEFr}A" :rem 221 

le6 PRINT" B{ DOWN} {LEFT }A{ DOWN} {LEFr }A" ~ TAB ( L3)" {DOWN}B{ DOWN} 
{LEFr}A{DOWN}{LEFr}A" :rem 223 

109 POKEA,W:POKEB,G:POKEC,G:POKED,G:POKEE,G :rem 11 
lIe IFPEEK(M+LL)=TTHENN=N-l:GOT05e0 :rem 166 
III IFPEEK(M)=30RPEEK(M)=6THEN930 :rem 247 
112 J=(PEEK(J3)ANDJ5)OR(PEEK(J2)ANDJ4):J=ABS«J-BI)!4)-7 

:rem 232 
113 IFJ=11THENPOKEM,T:M=M+K:POKEM,F2:POKES2,S7:POKES2,0 

:rem 38 
114 IFJ=3THENPOKEM,T:M=M-K:POKEM,F4:POKES2,S7:POKES2,0 

:rem 252 
115 IFJ=6ANDPEEK(M)=KORPEEK(M)=HTHENPOKEM,T:M=M-LL:POKEM,F6:P 

OKES2,S7:POKES2,0 :rem 86 
119 IFCO<CLTHENFORI=lTOBI:NEXT :rem 251 
120 POKEA,T:POKEB,T:POKEC,T:POKED,T:POKEE,T :rem 53 
125 BO=BO-B1 :rem 175 
13e A=A-BB:B=B+BB:C=C+AA:D=D+BB:E=E+AA:POKES3,0 :rem 30 
135 IFM=LATHEN940 :rem 11 
14e PR1NT"{HOME}{WHT}{RVS}"BO:IFBO=<OTHENN=0:GOT0300 :rem 51 
15e NEXTU : rem 42 
16e GOT089 :rem 65 
20e DATA255,24,36,66,255,0,0,0,36,60,36,60,36,60,36,60,231,60 

,36,60,231,60,36,60 :rem 117 
21e DATA254,56,84,84,84,84,56,254,3,3,12,10,152,100,4,8,6,6,5 

2,73,22,48,72,132 :rem 40 

319 



I More Gomes 

220 DATA0,254,56,84,146,84,56,255,96,96,44,146,104,12,18,33,1 
92,192,48,80,25,38,32,16 :rem 164 

230 DATA16,56,16,56,84,56,124,40,16,56,16,56,84,16,40,40 
:rem 248 

300 POKES1,220:FORL=15T00STEP-1:POKES4,L:FORM=lT0100:NEXTM:NE 
XTL:POKES1,0:POKES4,0 :rem 27 

305 IFN>=lANDCO<=136THEN15 : rem 46 
310 PRINT" {HOME} {10 DOWN} "SPC( 5)" {RVS} {BLK} PLAY AGAIN?": POKES 

3,0 :rem 148 
312 GETA$ :IFA$="Y"THEN5 : rem 71 
313 IFA$="N"THENSYS65234 : rem 140 
314 GOT0312 :rem 103 
500 POKES3,0:L=L-1:POKES3,L:POKEM,T:M=M+LL:POKEM,4 :rem 154 
505 IFPEEK(M+LL)=00RM>8185THENPOKES3,0:GOT0300 :rem 100 
510 GOT0500 :rem 100 
910 EP=135:FORI=lT0106:POKES3,0:EP=EP+1:POKES3,EP:NEXT:POKES3 

,0 : rem 211 
920 PRINT"{HOME}{10 DOWN}{RVSl{6 SPACES}GOOD GAME":FORJ=lT010 

000:NEXT:SYS65234 :rem 161 
930 POKES1,128:FORI=lT0100:NEXT:POKES1,0:N=N-1:GOT015 :rem 46 
940 SC=SC+BO:CO=CO+16:POKES3,0:N=N+1:GOT015 :rem 130 

320 



L~~I~ I Trench Wars 
"Trench Wars" is a fast-moving, reverse-scrolling action game of skill for the 
unexpanded VIC and a joystick. 

You are the pilot of a cargo ship that, in accordance with the great 
convention against weaponry, is unarmed. Your goal is to maneuver within 
the trench and pick up cargo while avoiding the kamikaze Aliens (they too 
are unarmed). You start with three men and a choice of nine levels. After 
every minute of play, the game goes to a docking subroutine which will add 
50 points to your score and advance you to the next level of difficulty. Do 
not hit the trench walls. Each cannister of cargo is worth 1 point, and you get 
an extra man every 150 points. 

I The Program 
The play is rather simple, but it is trickier than it seems. The program reverse 
scrolls everything on the screen except the title and the player's ship. It 
makes extensive use of the programmable characters. The number of charac
ters on the screen at any time is determined in line 58. The probability of a 
character being printed each line is determined by multiplying the level 
number by 10 percent. Eventually, there is a character on every line, and it 
seems that "joystick wrist" becomes more dangerous than the Aliens. 

I have included a rather unusual explosion feature that makes use of the 
programmable characters. This lies within the subroutine starting at 8000. It 
first POKEs 30 (the player ship) into the screen location G and blanks out 
the space above it (G-22: whatever was run into). It then randomly changes 
the statistics for this character and gives an illusion of flame. Next, 2 is POKEd 
into the same location, which is a previously compiled character to look like 
debris. All this done in conjunction with the white noise generator explosion 
gives an excellent effect. Unfortunately, the statistics for the player's ship 
must then be recompiled (this explains the seemingly useless loop at 9999). 

The subroutine at 5000 checks to see if the joystick has been moved 
right or left only. JS(X+l,Y+l) will return either a 2 if the joystick is right 
or a 6 if the joystick is left. Once the operation is performed in line 5000, R 
will equal a number that is either positive or negative, and the movement is 
based on that number. 

If the ship goes far enough in either direction to hit the wall, it goes to 
the subroutine that starts at 8000 (this is determined in lines 5000 and 5005). 

Trench Wars 
For mistake-proof program entry, be sure to use "The Automatic Proofreader," Appendix C. 

o GOSUB9999:POKE36879,8:AP=150 
1 PRINT" (CLR) (4 SPACES }TRENCH WARS" 
2 PRINT"DIFFICULTY (1-9)?" 

:rem 16 
:rem 150 

:rem 29 

321 



I More Gomes 

3 GETA$:A=VAL(A$):IFA=00RA<00RA>9THEN3 :rem 73 
4 PRINT" {UP} {20 SPACES}":PRINT" {UP} {RED} 1111! 1 {10 SPACES} 1111 

II" :rem218 
5 G=8098+9:C=38818+9 :r~m 32 
7 PM=3 : rem 68 
8 POKE36878,5:POKE36877,255 :rem 24 
10 DIM JS(2,2):POKE37139,0:DD=37154:PA=37137:PB=37152:rem 160 
20 FORI=0T02:FORJ=0T02:READJS(J,I):NEXTJ,I :rem 188 
40 TI$="000000" :rem 198 
49 PRINT" {HOME} {CYN} " r PMr" TRENCH WARS" r PP : rem 35 
50 GOSUB9000:PRINT" {HOME} {DOWN} {RED} 111111 {9 SPACES} 1111111" 

:rem 166 
51 PRINT" {HOME} {DOWN} {LEFl'} {INST}" :POKE218, 158 : rem 90 
55 POKEG,30:POKEC,INT(RND(1)*6+1) :rem 165 
56 R=INT( RND( 1 )*2) : R1=INT( RND(l )*200+1) : IFR=0THENZ$=" {HHT} " 

:rem 103 
57 IFR=lTHENZ$="{BLU}" :rem 8 
58 IFR1 > 100- (A*10) THENPRINT " {HOME} {2 DOWN}" r TAB (INT (RND( 1) *9+ 

6»rZ$rCHR$(R+64) :rem 195 
59 POKEG,32 :rem 117 
60 IFJS(X+1,Y+1)<>8THENGOSUB5000 :rem 158 
65 IFPEEK(G-22)<>32THEN8000 :rem 30 
70 IFVAL(TI$»100THENGOSUB500 :rem 254 
80 GOT050 : rem 6 
100 POKE36878,15:POKE36874,240:POKE36878,5:POKE36874,0:rem 68 
110 IFPP>APTHENGOSUB200:GOT049 :rem 177 
120 RETURN :rem 115 
200 AP=AP+150:PM=PM+1:FORT=lT02:POKE36877,0:POKE36878,15 

:rem 86 
210 POKE36876,220:FORH=IT0200:NEXT:POKE36876,240:FORH=lT0200: 

NEXT:POKE36876,0 :rem 166 
220 NEXTT:POKE36878,5:POKE36877,255:RETURN :rem 91 
500 DO$="r<{DOHN}{2 LEFT}=>" :rem 10 
501 POKEG,32:G=8098+9:C=38818+9 :rem 194 
505 FORT=lT020 :rem 72 
506 PRINT" {HOME} {DOWN} {LEFl'} {INST}": POKE218, 158 : rem 143 
507 POKEG,30:POKEC,6 :rem 175 
510 PRINT"{DOWN}{RED}IIIIII{9 SPACES}IIIIIII" :rem 65 
511 FORH=lT050:NEXT :rem 181 
515 POKEG,32 :rem 162 
520 NEXTT : rem 42 
540 PRINTTAB(9)rDO$ :rem 121 
550 FORT=lT012 :rem 73 
556 PRINT"{HOME}{DOmn{LEFl'}{INST}":POKE218,158 :rem 148 
557 POKEG,30:POKEC,6 :rem 180 
560 PRINT" {DOWN} {RED} 111111 {9 SPACES} 111111 !" : rem 70 
571 FORH=lT050:NEXT :rem 187 
575 POKEG,32 :rem 168 
580 NEXTT :rem 48 
590 POKEG,30:POKE36878,15:POKE36877,0:FORT=IT02 :rem 58 

322 



More Games I 
600 POKE36876,240:FORH=lT0150:NEXT:POKE36876,0:FORH=lT010 

:rem 204 
610 NEXTH,T:PP=PP+50:POKEG,32:POKE36878,5:POKE36877,255 

:rem 64 
620 FORT=lT07 :PRINT" {HOME} {DOWN} {LEFT} {INST}" :POKE218, 158 

625 PRINT"{DOWN} {RED}!11111 {9 SPACES} 1111111" 
626 FORH=lT050:NEXT 

:rem 73 
:rem 72 

: rem 188 
630 NEXTT :rem 44 
635 IFPP>APTHENGOSUB200 :rem 221 
1000 PRINT"{HOME}{4 SPACES}TRENCH \i[ARS{7 SPACES}":TI$="000000 

" : A=A+ 1 : rem 15 1 
1001 RETURN :rem 162 
5000 R=JS(X+l,Y+l)-4:IFR<0ANDG+l>=8098+15THEN8000 :rem 17 
5005 IFR>0ANDG-l<=8098+5THEN8000 :rem 58 
5010 IFR<0THENG=G+l:C=C+l:RETURN :rem 220 
5020 IFR>0THENG=G-l:C=C-l:RETURN :rem 227 
5030 RETURN :rem 168 
8000 REM BOOM :rem 217 
8010 IFPEEK(G-22)=0THENPP=PP+l:GOSUB100:GOT049 :rem 70 
8020 POKEG,30:FORT=15T00STEP-3:POKE36878,T:POKE36877,255 

:rem 143 
8021 POKEG-22,32:FORX=7168+(8*30)T07168+(8*30)+7:POKEX,INT(RN 

D(I)*256):NEXTX :rem 115 
8022 NEXTT:POKE36878,5:POKEG,2 :rem 71 
8035 RESTORE:FORZ=7168+(8*30)T07168+(8*30)+7:READZZ:POKEZ,ZZ: 

NEXTZ :rem 95 
8036 POKEG, 32 :G=8098+9 :C=38818 +9 : rem 253 
8990 PM=PM-l:IFPM=0THENPRINT"{CLR}{7 DOWN}{3 SPACES}GAME OVER 

"~PP:POKE36877,0 :rem 145 
8991 IFPM=0THENFORT=lT01000:NEXT:RUN :rem 88 
8999 POKE646,6:GOT049 :rem 244 
9000 POKEDD,127:S3=-«PEEK(PB)ANDI28)=0):POKEDD,255 :rem 174 
9010 P=PEEK(PA):Sl=-«PAND8)=0):S2=«PANDI6)=0):S0=«PAND4)=0 

) : rem 229 
9020 FR=-«PAND32)=0):X=S2+S3:Y=S0+S1:RETURN :rem 133 
9999 PRINT"{CLR}":FORT=lT08:READZ$:NEXT :rem 83 
10000 POKE52,28:POKE56,28:FORI=7168T07679:POKEI,PEEK(I+25600) 

:NEXT:POKE36869,255 :rem 3 
10020 FORC=7168+(8*30)T07168+(8*30)+7:READA:POKEC,A:NEXT 

:rem 102 
10030 FORC=7432T07432+7:READA:POKEC,A:NEXT :rem 41 
10040 FORC=7168+16T07168+16+7:READA:POKEC,A:NEXT :rem 90 
10050 FORC=7168+8T07168+15:READA:POKEC,A:NEXT :rem 201 
10060 FORC=7168T07168+7:READA:POKEC,A:NEXT :rem 56 
10070 FORC=7168+(8*59)T07168+(8*59)+7:READA:POKEC,A:NEXT 

:rem 209 
10080 FORC=7168+(8*60)T07168+(8*60)+7:READA:POKEC,A:NEXT 

:rem 194 
10090 FORC=7168+(8*61)T07168+(8*61)+7:READA:POKEC,A:NEXT 

:rem 197 

323 



More Games 

10100 FORC=7168+(8*62)T07168+(8*62)+7:READA:POKEC,A:NEXT 
:rem 191 

19998 PRINT" {CLR} " : RETURN :rem 146 
19999 DATA16,16,16,84,186,146,186,186 :rem 124 
20000 DATA16,16,16,84,186,146,186,186 :rem 89 
20010 DATA255,255,255,255,255,255,255,255 :rem 33 
20020 DATA129,42,68,145,4,100,10,160 :rem 9 
20030 DATA40,108,108,16,56,84,16,16 :rem 229 
20040 DATA126,126,126,60,126,126,126,0 :rem 112 
20050 DATA16,56,16,16,25,23,18,23 :rem 127 
20060 DATA8,28,8,8,152,232,200,232 :rem 176 
20070 DATA23,18,23,25,16,16,56,16 :rem 129 
20080 DATA232,200,232,152,8,8,28,8 :rem 178 
29999 DATA7,0,1,6,8,2,5,4,4 :rem un 

324 



Appendices 





Appendix 
A 

Beginner's Guide to 
Typing In Programs 

I What Is a Program? 
A computer cannot perform any task by itself. Like a car without gas, a com
puter has potential, but without a program, it isn't going anywhere. Most of 
the programs published in this book are written in a computer language 
called BASIC. BASIC is easy to learn and is built into all VIC-20s. 

I BASIC Programs 
Computers can be picky. Unlike the English language, which is full of ambi
guities, BASIC usually has only one right way of stating something. Every 
letter, character, and number is significant. A common mistake is substituting 
a letter such as 0 for the numeral 0, a lowercase I for the numeral 1, or an 
uppercase B for the numeral 8. Also, you must enter all punctuation marks, 
such as colons and commas, just as they appear in the book. Spacing can be 
important. To be safe, type in the listings exactly as they appear. 

I Braces and Special Characters 
The exception to this typing rule is when you see the braces, such as 
{DOWN}. Anything within a set of braces is a special character, or charac
ters, that cannot easily be listed on a printer. When you come across such a 
special statement, refer to "How to Type In Programs" (Appendix B). 

I About DATA Statements 
Some programs contain a section, or sections, of DATA statements. These 
lines provide information needed by the program. Some DATA statements 
contain actual programs (in machine language), while others may contain 
graphics codes. These lines are especially sensitive to errors. 

If a single number in anyone DATA statement is mistyped, your ma
chine could lock up, or crash. The keyboard and RUN/STOP key may seem 
dead, and the screen may go blank. But don't panic. No damage has been 
done. To regain control, turn off your computer and then turn it back on. 
This will erase whatever program was in memory, so always save a copy of 
your program before you run it. If your computer crashes, you can load the 
program and look for your mistake. 

Sometimes a mistyped DATA statement will cause an error message 
when the program is run. The error message may refer to the program line 
that READs the data. However, the error is still in the DATA statements. 

327 



Appendix A 

I Get to Know Your Machine 
You should familiarize yourself with your computer before attempting to 
type in a program. Learn the statements you use to store and retrieve pro
grams from tape or disk. You'll want to save a copy of your program so that 
you won't have to type it in every time you want to use it. Learn to use your 
machine's editing functions. How do you change a line if you made a mis
take? You can always retype the line, but you should at least know how to 
backspace. Do you know how to enter reverse-video, lowercase, and control 
characters? It's all explained in your manual. 

In order to insure accurate entry of each program line, we have included 
a checksum program. Please read "The Automatic Proofreader" (Appendix 
C) before typing in any of the programs in this book. 

I A Quick Review 
1. Type in the program a line at a time in order. Press RETURN at the end of 

each line. Use the INST jDEL key to correct mistakes. 
2. Check the line you've typed against the line in the book. You can check 

the entire program again if you get an error when you run the program. 

328 



Appendix 
B 

How to Type In 
Programs 

Many of the programs in this book contain special control characters (for ex
ample, cursor controls, color keys, and reverse video). To make it easy to 
know exactly what to type when entering one of these programs into your 
computer, we have established the following listing conventions. 

Generally, VIC-20 program listings will contain words within braces 
which spell out any special characters: {DOWN} would mean to press the 
cursor-down key. {5 SPACES} would mean to press the space bar five times. 

To indicate that a key should be shifted (hold down the SHIFT key while 
pressing the other key), the key would be underlined in our listings. For ex
ample, ~ would mean to type the S key while holding the SHIFT key. This 
would appear on your screen as a heart symbol. If you find an underlined 
key enclosed in braces (for example, {1O N}), you should type the key as 
many times as indicated. In that case, you would enter ten shifted N's. 

If a key is enclosed in special brackets, f<», you should hold down the 
Commodore key while pressing the key inside the special brackets. (The Com
modore key is the key in the lower-left corner of the keyboard.) Again, if the 
key is preceded by a number, you should press the key as many times as 
necessary. 

I Keyword Abbreviations 
In order to get as much as possible into an unexpanded VIC-20, many pro
grammers pack program lines by leaving out spaces wherever possible and 
by using keyword abbreviations when writing the program. One VIC pro
gram line (a logical line) can have a maximum of 88 characters including 
spaces-four screen (physical) lines. By using abbreviations a programmer 
can save memory by putting more code on a logical line than would be pos
sible if each keyword were spelled out. 

The listings in this book contain all the keywords spelled out. If you try 
to enter a program line with more than 88 characters, the line will not be 
saved in the VIC's memory completely, and the program will not function 
correctly. In order to enter lines that otherwise would be too long, it's nec
essary to use keyword abbreviations. Below is a list of some of the more fre
quently used keywords with their abbreviations; for a complete list see 
Appendix D of Personal Computing on the VIC-20, the manual that came with 
the computer. 

329 

I 

j 



I Appendix B 

Keyword Abbreviation 
CHR$ C SHIFT-H 
DATA D SHIFT-A 
FOR F SHIFT-O 
NEXT N SHIFT-E 
PEEK P SHIFT-E 
POKE P SHIFT-O 
PRINT ? 
RETURN RE SHIFT -T 
TAB( T SHIFT-A 
THEN T SHIFT-H 

I Quote Mode 
You know that you can move the cursor around the screen with the CRSR 
keys. Sometimes a programmer will want to move the cursor under program 
control. That's why you see all the {LEFT}'s, {HOME}'s, and {DOWN}'s in 
our programs. The only way the computer can tell the difference between di
rect and programmed cursor control is the quote mode. 

Once you press the quote (the double quote, SHIFT -2), you are in the 
quote mode. If you type something and then try to change it by moving the 
cursor left, you'll only get a bunch of reverse-video lines. These are the sym
bols for cursor left. The only editing key that isn't programmable is the 
INST jDEL key; you can still use INST jDEL to back up and edit the line. 
Once you type another quote, you are out of quote mode. 

You also go into quote mode when you INSerT spaces into a line. In any 
case, the easiest way to get out of quote mode is just to press RETURN. 
You'll then be out of quote mode and can cursor up to the mistyped line and 
fix it. 

In order to insure accurate entry of each program line, we have included 
a checksum program. Please read "The Automatic Proofreader" (Appendix 
C) before typing in any of the programs in this book. 

Refer to the following table when entering cursor and color control keys: 

330 



Appendix B I 
When You When You 
Read: Press: See: Read: Press: See: 
{eLR} I SHIff] I CLR/HOME I II {GRN} I CfRL I o=J II 
{HOME} I CLR/HOME ] • {BLU} I CfRL IQ] • {UP} I SHIff II t CRSR l I m {YEL} ICfRLICO • {DOWN} ItCRSRllmD { F1 } [fi] • {LEFT} I SHIff I E!g II { F2 } I SHIff I [fi] • {RIGHT} I-CRSR-11lI { F3 } DO • {RVS} I CfRL I C.!.J Ill) ' . { F4 } I SHIff I DO • {OFF} ICfRLI~ • { F5 } IT] • {BLK} I CfRL I CO •• { F6 } I SHIff i IT] • {WHT} I CfRL I cz=J III { F7 } IT] • {RED} ICfRLILO II { F8 } I SHIff I IT] • {ON} ICfRLI~ • .. EJ • {PUR} @~[D (I 1 \ SHIFT \ CD • 

331 



Appendix 
C 

The Automatic 
Proofreader 
Charles Brannon 

"The Automatic Proofreader" will help you type in program listings without 
typing mistakes. It is a short error-checking program that hides itself in 
memory. When activated, it lets you know immediately after typing a line 
from a program listing if you have made a mistake. Please read these instruc
tions carefully before typing any programs in this book. 

I Preparing the Proofreader 
1. Using the listing below, type in the Proofreader. Be very careful when 

entering the DATA statements-don't type an 1 instead of a I, an 0 in
stead of a 0, extra commas, and so forth. 

2. Save the Proofreader on tape or disk at least twice before running it for the 
first time. This is very important because the Proofreader erases part of it
self when you first type RUN. 

3. After the Proofreader is saved, type RUN. It will check itself for typing er
rors in the DATA statements and warn you if there's a mistake. Correct 
any errors and save the corrected version. Keep a copy in a safe place
you'll need it again and again, every time you enter a program from this 
book, COMPUTEt's Gazette, or COMPUTEt magazine. 

4. When a correct version of the Proofreader is run, it activates itself. You are 
now ready to enter a program listing. If you press RUN/STOP-RESTORE, 
the Proofreader is disabled. To reactivate it, just type the command SYS 
886 and press RETURN. 

I Using the Proofreader 
Most of the listings in this book have a checksum number appended to the 
end of each line, for example, :rem 123. Don't enter this statement when typing 
in a program. It is just for your information. The rem makes the number 
harmless if someone does type it in. It will, however, use up memory if you 
enter it, and it will confuse the Proofreader, even if you entered the rest of 
the line correctly. 

When you type in a line from a program listing and press RETURN, the 
Proofreader displays a number at the top of your screen. This checksum num
ber must match the checksum number in the printed listing. If it doesn't, it 
means you typed the line differently from the way it is listed. Immediately 
recheck your typing. Remember, don't type the rem statement with the 

332 



Appendix C I 
checksum number; it is published only so that you can check it against the 
number which appears on your screen. 

The Proofreader is not picky about spaces. It will not notice extra spaces 
or missing ones. This is for your convenience since spacing is generally not 
important. But occasionally proper spacing is important, so be extra careful 
with spaces. 

Due to the nature of a checksum, the Proofreader will not catch all er
rors. Since 1 + 3 + 5 = 3 + 1 + 5, the Proofreader cannot catch errors of 
transposition. Thus, the Proofreader will not notice if you type GOTO 385 
where you mean GOTO 835. In fact, you could type in the line in any order 
and the Proofreader wouldn't notice. The Proofreader should help you catch 
most typing mistakes, but keep this in mind if a program that checks out 
with the Proofreader still seems to have errors. 

There's another thing to watch out for: If you enter the line by using 
abbreviations for commands, the checksum will not match up. But there is a 
way to make the Proofreader check it. After entering the line, LIST it. This 
eliminates the abbreviations. Then move the cursor up to the line and press 
RETURN. It should now match the checksum. You can check whole groups 
of lines this way. Do not use this method if the line required the use of abbrevi
ations in order to fit within the 88-character limit. 

I Special Tape SAVE Instructions 
When you're through typing in a listing, you must disable the Proofreader 
before saving the program on tape. Disable the Proofreader by pressing 
RUN/STOP-RESTORE (hold down the RUN/STOP key and sharply hit the 
RESTORE key). This procedure is not necessary for disk SAVEs, but you must 
disable the Proofreader this way before a tape SAVE. 

SAVE to tape erases the Proofreader from memory, so you'll have to 
load and run it again if you want to type another listing. SAVE to disk does 
not erase the Proofreader. 

I Hidden Perils 
The Proofreader's home in memory is not a very safe haven. Since the cas
sette buffer is wiped out during tape operations, you need to disable the 
Proofreader with RUN/STOP-RESTORE before you save your program. This 
applies only to tape use. Disk users have nothing to worry about. 

Not so for VIC-20 owners with tape drives. What if you type in a pro
gram in several sittings? The next day, you come to your computer, load and 
run the Proofreader, then try to load the partially completed program so that 
you can add to it. But since the Proofreader is trying to hide in the cassette 
buffer, it is wiped out! 

333 



I Appendix C 

What you need is a way to load the Proofreader after you've loaded the 
partial program. The problem is, a tape LOAD to the buffer destroys what it's 
supposed to load. 

If you intend to type in a program in more than one sitting or wish to 
make a safety SAVE, follow this procedure: 

1. Load and run the Proofreader. 
2. Disable it by pressing RUN/STOP-RESTORE. 
3. Type the following three lines in direct mode (without line numbers): 

A$="PROOFREADER.T":B$="{H'J SPACES}":FOR X=l TO 4:A 
$=A$+B$:NEXT X 

FOR X=886 TO 1018:A$=A$+CHR$(PEEK(X»:NEXT X 

OPEN 1,1,1,A$:CLOSE 1 

After you enter the last line, you will be asked to press RECORD and 
PLAY on your cassette recorder. Put this program at the beginning of a new 
tape. 

You now have a new version of the Proofreader. Turn your computer off 
and on, then load the program you were working on. Put the cassette 
containing the Proofreader into the tape unit and type: 
OPEN1:CLOSEl 

You can now start the Proofreader by typing SYS 886. To test this, 
PRINT PEEK (886) should return the number 173. If it does not, repeat the 
steps above, making sure that A$ ("PROOFREADER.T") contains 13 charac
ters and that B$ contains 10 spaces. 

You can now reload the Proofreader into memory whenever LOAD or 
SAVE destroys it, restoring your personal typing helper. 

The Automatic Proofreader 
100 PRINT"{CLR}PLEASE WAIT ... ":FORI=886T01018:READA:CK=CK+A:P 

OKEI,A:NEXT 
110 IF CK<>17539 THEN PRINT"{Dm-m}yOU MADE AN ERROR":PRINT"IN 

DATA STATEMENTS." :END 
120 SYS886 :PRINT" {CLR} {2 Dmm}PROOFREADER ACTIVATED." :NE\l 
886 DATA 173,036,003,201,150,208 
892 DATA 001,096,141,151,003,173 
898 DATA 037,003,141,152,003,169 
904 DATA 150,141,036,003,169,003 
910 DATA 141,037,003,169,000,133 
916 DATA 254,096,032,087,241,133 
922 DATA 251,134,252,132,253,008 
928 DATA 201,013,240,017,201,032 
934 DATA 240,005,024,101,254,133 

334 



940 DATA 254,165,251,166,252,164 
946 DATA 253,040,096,169,013,032 
952 DATA 210,255,165,214,141,251 
958 DATA 003,206,251,003,169,000 
964 DATA 133,216,169,019,032,210 
970 DATA 255,169,018,032,210,255 
976 DATA 169,058,032,210,255,166 
982 DATA 254,169,000,133,254,172 
988 DATA 151,003,192,087,208,006 
994 DATA 032,205,189,076,235,003 
1000 DATA 032,205,221,169,032,032 
1006 DATA 210,255,032,210,255,173 
1012 DATA 251,003,133,214,076,173 
1018 DATA 003 

Appendix C I 

335 

.. 





To order your copy of the VIC-20 Collection Disk call our 
toll-free US order line: 1-800-334-0868 (in NC call 919-275-
9809) or send your prepaid order to: 

VIC-20 Collection Disk 
COMPUTE! Publications 
P.O. Box 5058 
Greensboro, NC 27403 

All orders must be prepaid (check, charge, or money order). NC 
residents add 4.5% sales tax. 

Send __ copies of the VIC-20 Collection Disk at $12.95 per 
copy. 

Subtotal $ ____ _ 

Shipping & Handling: $2.00jdisk $ ____ _ 

Sales tax (if applicable) $ ____ _ 

Total payment enclosed $ ____ _ 

o Payment enclosed 
Charge 0 Visa 0 MasterCard 0 American Express 

Acct. No. ____________ Exp. Date __ _ 
Required 

Name ____________________ _ 

Address ___________________ _ 

City ___________ State ___ Zip __ _ 

Please allow 4-5 weeks for delivery. 

45R0073 





If you've enjoyed the articles in this book, you'll find 
the same style and quality in every monthly issue of 
COMPUTEI's Gazette for Commodore. 

For Fastest Service 
Call Our Toll-Free US Order Line 

800-334-0868 
In NC call 919-275-9809 

COMPUTE!'s Gazette 
P.o. Box 5058 
Greensboro. NC 27403 

My computer is: 
D Commodore 64 D VIC-20 D Other _____ _ 

D $24 One Year US Subscription 
D $45 Two Year US Subscription 
D $65 Three Year US Subscription 

Subscription rates outside the US: 
D $30 Canada 
D $65 Air Mail Delivery 
D $30 International Surface Mail 

Name 
Address 

City State 

Country 

Zip 

Payment must be in US funds drawn on a US bank, international 
money order, or charge card. Your subscription will begin with the 
next available issue. Please allow 4-6 weeks for delivery of first is
sue. Subscription prices subject to change at any time. 
D Payment Enclosed 0 Visa 
D MasterCard D American Express 

Acct. No. Expires / 
(ReqUired) 

The COMPUTErs Gazette subscriber list is made available to carefully screened 
organizations with a product or service which may be of interest to our readers. If you 
prefer not to receive such mailings, please check this box 0 

758199 

l 





I -

COMPUTE! Books 
Ask your retailer for these COMPUTE! Books or order 
directly from COMPUTE!, 
Call toll free (in US) 800-334-0868 (in NC 919-275-9809) 
or write COMPUTE! Books, P,O, Box 5058, Greensboro, 
NC 27403, 
Quantity Title Price" Total 

SpeedScript: The Word Processor for the 
$ 9.95 __ Commodore 64 and VIC-20 (94-9) 

Commodore SpeedScript Book Disk $12.95 __ 

COMPUTE!'s Commodore 64/128 Collection 
$12.95 __ (97-3) 

All About the Commodore 64, Volume Two 
(45-0) $16.95 __ 

Ali About the Commodore 64, Volume One 
(40-X) $12.95 __ 

Programming the Commodore 64: 
$19.95 __ The Definitive Guide (50-7) 

COMPUTE!'s Data File Handler for the 
Commodore 64 (86-8) $12.95 __ 
Kids and the Commodore 64 (77-9) $12.95 __ 

COMPUTE!'s Commodore Collection, 
Volume 1 (55-8) $12.95 __ 
COMPUTE!'s Commodore Collection, 
Volume 2 (70-1) $12.95 __ 
COMPUTE!'s VIC-20 and Commodore 64 
Tool Kit: BASIC (32-9) $16.95 __ 

Programming the VIC (52-3) $24.95 __ 

VIC Games for Kids (35-3) $12.95 __ 
COMPUTE!'s First Book of VIC (07-8) $12.95 __ 

COMPUTE!'s Second Book of VIC (16-7) $12.95 __ 

COMPUTE!'s Third Book of VIC (43-4) $12.95 __ 

Mapping the VIC (24-8) $14.95 __ 
COMPUTE!'s VIC-20 Collection (007) $12.95 __ 

·Add $2.00 per book for shipping and handling. 
Outside US add $5.00 air mail or $2.00 surface mail 

NC residents add 4.5% sales tax. 

Shipping" handling: $2.00/book 
Total payment ____ _ 

All orders must be prepaid (check, charge, or money order), 
All payments must be in US funds, 
o Payment enclosed, 
Charge 0 Visa 0 MasterCard 0 American Express 
Acct, No, Exp, Date, ___ _ 
Name ____________________________________________ _ 

Address __________________________________________ __ 

City ____________ _ 
"Allow 4-5 weeks for delivery. 
Prices and availability subject to change. 
Current catalog available upon request. 

State ___ _ Zip. ___ _ 

4580073 

-I 

J 





I Index 
AI. See artificial intelligence 
aligning numbers 20 
"Alternating" program 40 
analog/digital converter 87 
AND# ML instruction 70 
ANDZ ML instruction 70 
arcade games 38 
arcade-style subroutines 38-40 
array 65 
artificial intelligence 220-24 
AS LA ML instruction 70 
assembler 48 
bar graph 130-31 
"Base Defense" program 239-40 
BASIC 

keywords 54-55 
start of, changing 5 

"Battleship" program 199-202 
"Big Screen Print" program 62-63 
bit 3 
bitmapping 91, 128, 254 
"Bitmapping Pixel" program 128-29 
block of memory, saving to tape 13-14 
"Bomber Squadron" program 241-45 
"Boogieball" program 296-99 
border color 135 
chaining programs 24-25 
"Challenger One" program 273-75 
character sets, memory locations for control of 6 
"Characters" program 79 
"Chopper Lift" program 315-17 
CLC ML instruction 70 
CLOSE command 12 
CMP ML instruction 70 
CMP# ML instruction 70 
"Code Game" program 189-90 
Commodore printer, "Write-On" and 155 
compressed BASIC keywords 54-56 
"Compressed List" program 56 
COMPUTEt's First Book of VIC 50 
COMPUTEt's Mapping the VIC 72 
COMPUTEt's Second Book of VIC 41 
COMPUTEt's VIC-20 and Commodore 64 Took Kit 

72 
custom characters 5-8, 38, 78-80, 91, 178-79, 

241 
DATA statement 158, 327 
DECZ ML instruction 70 
"Diamond Maze" program 215-16 
disassembler 48-49, 51-52 
"Disassembler" program 51-52 
disk 10, 44-45 
dummy records, relative files and 12 
"Dungeon Escape" program 286-90 

"8K Setup" program (VIC graph) 93 
"Example 1" program (multiprocessing) 61 
"Example 2" program (multiprocessing) 61 
"Ex-blast" program 246-48 
expansion cartridge 3, 5, 46, 120, 135, 138, 

167-68, 254, 264, 279, 300 
"Experiment, The" program 9 
"Fasplot" program 82-83 
1541 model disk drive 10 
fire button 34 
"Flag" program 136 
"Flipper" program 203-4 
FOR-NEXT loop 23, 130 
game paddles 87-90, 251 
GET statement 21 
"Graph Expanded" program (VIC Graph) 93 
graphic pictures 105-7 
graphics characters, mixing with text 9 
"Graph" program 130-34 
"Graph Unexpanded" program (VIC Graph) 

93-94 
"Heist" program 211-14 
"Hide-N-Seek" program 312-14 
high VIC 5,6 
"Hyper Ballshot" program 251-53 
input 18-22 
IRQ interrupt 57, 58, 159 
JMP ML instruction 70 
"Joyfast" program 82 
joystick 34, 36, 81-82,178,185,195,211,215, 

217,235, 249, 258, 267, 300, 303, 312, 321 
KernaL 41, 48 
"Key test" program 50, 52-53 
keywords, BASIC 54-55 
"Lap Racer" program 178-81 
"Laser Command" program 254-57 
"Laser War" program 270-72 
LDA ML instruction 49, 70 
LDX# ML instruction 70 
LDXY ML instruction 70 
"Light Cycles" program 300-302 
LOAD command 13-16 
logical file number 10, 11 
logical line 54 
"Logicolor" program 191-94 
low VIC 5,6 
LSRA ML instruction 70 
LSR ML instruction 70 
machine language 70-73 
Machine Language for Beginners 71 
"Maneuver" program 195-98 
"Marquee Demo" program 159-61 
masking 21-22 
"Mate" program (Music Mate) 117-19 
mazes 220-24 

337 



maze strategies 221-23 
"Meltdown" program 217-19 
memory address, loading to 1-15 
memory expansion 5 
memory pointers 5 
"Message Board" program 162-63 
"Meteors" program 249-50 
"Microassembler" 70-77 
"Move X" program 34-35 
"Moving" program 40 
multiprocessing 57-61 
"Multiprocess" program 60-61 
music 115-27 
"Music Mate" program 116 
"Music Maker" program 140-48 
"Music Mate" system 115-19 
"Music Maker" system 138-49 
"Music Player" program 148-49 
OPEN command 10 
ORAZ ML instruction 70 
output 18-22 
"Paddle Graphics" program 87-90 
"Page Flip" program 3-4 
"Piano Player" program 120-27 
"Pilot" program 266-69 
"Place Your Bet" program 293-95 
"Poker Challenge" program 205-8 
precision, arithmetical 18-20 
printer 46, 62-63 
PRINT statement 24 
PRINT USING statement 18 
program listing conventions 329-31 
programmable characters. See custom characters 
Programming the 6502 72 
Programming the VIC 31 
quote mode 330 
"Rainbow Border" program 136-37 
raster beam register 9 
"Rats!" program 220-32 
READ statement 328 
relative files 10-12 
"Rescue Mission" program 303-5 
rounding off numbers 19-20 
"S.X. Demo" program 137 
SAVE command 15-17 
saving memory 23-25 
"Scavenger Hunt" programs 306-11 
screen 9, 58-59, 62-63 

and border color register 135 
dump, high-resolution 46 
management 3, 6, 81-83 
memory 5-8 
pages 3 
save 41-43 
split 9, 58-59 

"Screen Print II" program 62-63 
"Screen Saves" program 42-43 
"Scroll Demo" program 30 
scrolling 29-30 
"Scroll Left" program 30 
"Scroll Right" program 20-30 

secondary address 15 
SED ML instruction 70 
serial printer 153 
"Sevicog" program 264-65 
6502 Assembly Language Programming 71 
"Slot Machine" program 185-88 
"Space Blockade" program 258-60 
"Space Corridor" program 235-38 
"Space Mission" program 279-85 
"Special Effects" program 79-80 
"Speed Demon" program 173-77 
"Speed Stick Demo" program 37 
"Speed Stick" program 36-37 
split screen 9, 58-59 
"Spring Man" program 318-20 
"Sprite Demo" program 104 
"Sprite Loader" program 101-4 
sprites 95-104 

defining 96-100 
grid 99 
registers 97 

"Strike Three" program 167-72 
string variables 23-24 
strings 158 
STX ML instruction 70 
"Super Dump" program 46-47 
Super Expander cartridge 46, 135, 254, 264, 300 

checking for presence of 254 
tape 13-17,31-33, 153,333 
"Tape Catalog" program 66-69 
tape header 31-32 
tape programs 

cataloging 64-69 
copying to disk 44 

"Tape Search" program 31-33 
"Tape to Disk" program 44-45 
text, mixing with graphics characters 9 
text adventures 286-88 
"Torpedo-8" program 261-63 
"Trench Wars" program 321-24 
typing in programs 327-31 
unexpanded VIC 29, 31, 34, 57, 92, 95, 153, 158, 

162,167,173,178,185,199,205,215,217, 
235, 239, 241, 246, 249, 251,258, 261, 270, 
273, 279, 293, 29~ 30~ 30~ 312, 315, 31~ 
321 

USR function 81-82 
variables 23-24 
VERIFY command 16 
Versatile Interface Adapter. See via 
VIA 36 
VIC chip 6, 62, 91 
"VIC Draw McGraw" program 105-14 
"VIC Graph" utility 91-94 
"VIC Marquee" program 158-61 
"VIC Set Demo" program 8 
"VIC Set" program 8 
VIC-20 Programmer's Reference Guide 71 
Video Interface Chip. See VIC chip 
WAIT statement 9 
word processor 153-57 
"Write-On" word processor 153-57 





A VIC-20 Bargain 
This huge collection of over 70 never-before-pub/ished articles and 
programs has something for every VIC-20 user. COMPUTEt's VIC-20 
Col/ection is a potpourri of tutorials, utilities, applications, and games 
collected over the past few years. 

Do you like to play games? Then you'll enjoy maze games like 
"Heist" and "Meltdown" that challenge you to think quickly. If logic 
games are your specialty, you'll find "Logicolor" and "Maneuver" 
intriguing puzzlers. And of course we've included adventure and 
arcade-style games to amuse and entertain. 

Do you need a simple word processor or a way to create sprites 
on your VIC? Maybe you just bought a disk drive and want a quick 
and easy way to transfer all your programs from tape to disk. You'll 
find these and much more in COMPUTEt's VIC-20 Collection. Here's a 
sample of what's inside: 
• I'Message Board," an easy way to create a message that will scroll 

across your screen while another program is running 
• "Music Mate," a music generator 
• A disassmbler to help you turn numbers into readable code 
• Nearly three dozen games, most of which run on an unexpanded VIC 
• Techniques to create your own character set 
• A simple way to have two BASIC programs running on your VIC at the 

same time 
• Programs that let you copy the screen to a printer 
• And more than 25 tutorials and utilities 

All the programs in COMPUTEt's VIC-20 Collection are ready to 
type in and use. And to make program entry as mistake-proof as pos
sible, we've included a program that checks your typing. Many of the 
programs in this book are beginner-level programs. While they lack the 
sophistication of professional software, they'll provide hours of 
entertainment and tutorial opportunities for modification and 
enhancement. 

ISBN 0-87455-007-6 




